36 research outputs found

    Reply to the correspondence: "On the fracture toughness of bioinspired ceramic materials"

    Full text link
    This is a reply to the correspondence of Prof. Robert Ritchie: "On the fracture toughness of bioinspired ceramic materials", submitted to Nature Materials, which discusses the fracture toughness values of the following papers: Bouville, F., Maire, E., Meille, S., Van de Moort\`ele, B., Stevenson, A. J., & Deville, S. (2014). Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Materials, 13(5), 508-514 and Le Ferrand, H., Bouville, F., Niebel, T. P., & Studart, A. R. (2015). Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Materials, 14(11), 1172-1172.Comment: 5 pages, 2 figure

    In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity

    Get PDF
    Space weathering is now generally accepted to modify the optical and magnetic properties of airless planetary regoliths such as those on the Moon and Mercury. Under micrometeorite and ion bombardment, ferrous iron in such surfaces is reduced to metallic iron spheres, found in amorphous coatings on almost all exposed regolith grains. The size and number distribution of these particles and their location in the regolith all determine the nature and extent of the optical and magnetic changes. These parameters in turn reflect the formation mechanisms, temperatures, and durations involved in the evolution of the regolith. Studying them in situ is of intrinsic value to understanding the weathering process, and useful for determining the maturity of the regolith and providing supporting data for interpreting remotely sensed mineralogy. Fine-grained metallic iron has a number of properties that make it amenable to magnetic techniques, of which magnetic susceptibility is the simplest and most robust. The magnetic properties of the lunar regolith and laboratory regolith analogues are therefore reviewed and the theoretical basis for the frequency dependence of magnetic susceptibility presented. Proposed here is then an instrument concept using multi-frequency measurements of magnetic susceptibility to confirm the presence of fine grained magnetic material and attempt to infer its quantity and size distribution. Such an instrument would be invaluable on a future mission to an asteroid, the Moon, Mercury or other airless rocky Solar System body

    On the application of magnetic methods for the characterisation of space weathering products

    Get PDF
    Space weathering is now commonly accepted to modify the optical and magnetic properties of airless body regoliths throughout the Solar System. Although the precise formation processes are not well understood, the presence of ubiquitous sub-microscopic metallic iron (SMFe) grains in lunar soils and corresponding spectral analyses have explained both the unique optical and magnetic properties of such soils. More recently, a variety of ion irradiation, laser melting and vaporisation and impact experiments have been shown to reproduce these effects in the laboratory. Such experiments are crucial to the study of the formation of SMFe under controlled conditions. To date, more emphasis has been placed on optical analyses of laboratory samples, as these address directly the mineralogical interpretation of remote sensing data. However, the magnetic analyses performed on the Apollo and Luna samples have provided useful qualitative and quantitative evaluation of regolith metallic iron content. These techniques are reviewed here, demonstrated on pulsed laser irradiated olivine powder, and their utility for determining the quantity and size distribution of this metallic iron discussed. Ferromagnetic resonance, multi- frequency magnetic susceptibility, vibrating sample magnetometry and thermomagnetic measurements were carried out. Each showed trends expected for the conversion of paramagnetic Fe2+ in olivine to fine-grained Fe0, with some grains in the superparamagnetic size range. Although evidence for super- paramagnetic iron was found, the quantity of sub-microscopic metallic iron produced in these experiments proved insufficient to make conclusive measurements of either the quantity or size distribution of this iron. Improvements to both the experimental and analytical procedures are discussed to better enable such measurements in the future

    Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites.

    No full text
    International audienc

    Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones

    No full text
    International audienceIn the mantle wedge of subduction zones, electromagnetic profiles reveal high electrical-conductivity bodies. In hot areas (>700 degrees C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs that can explain the observed high conductivities. In the cold (= 1 m) fluids during progressive serpentinisation of the mantle wedge. These fluids can mix with arc magmas at depths and account for high chlorine/water ratios in arc lava

    Kinetics and mechanism of antigorite dehydration: Implications for subduction zone seismicity

    No full text
    International audienceProperties of serpentine minerals are thought to influence the occurrence and location of intermediate‐depth seismicity in subduction zones, which is often characterized by two dipping planes separated by ∼30 km defining a double seismic zone. The seismicity of the lower plane is believed to be provoked by the dehydration of serpentine since the experimentally determined stability limit for antigorite matches hypocenter locations. This requires that the fluid produced by dehydration is released much faster than the typical time scale of ductile deformation mechanisms. Here we measured the kinetics of antigorite dehydration in situ at high pressure and high temperature by time‐resolved synchrotron X‐ray diffraction in a closed system. Antigorite dehydrates in two steps. During step 1 it partially breaks down into olivine and a hydrous phyllosilicate closely related to the 10 Å phase. The modal abundance of the intermediate assemblage is described by 66 wt % antigorite, 19 wt % olivine, 12 wt % 10 Å phase. During step 2 at higher temperature, the remaining antigorite and the 10 Å phase fully dehydrate. From the analysis of reaction progress data, we determined that the major release of aqueous fluid occurs during step 2 at a fast rate of 10−4 mfluid 3 mrock −3 s−1. This exceeds by orders of magnitude the typical time scale of deformation by ductile mechanisms of any mineral or rock in the subducting slab or in the overlying mantle wedge. These results suggest that the fast dehydration of antigorite may well trigger the seismicity of the lower plane of the double seismic zone

    Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI

    No full text
    Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities.ISSN:1932-620
    corecore