
Open Research Online
The Open University’s repository of research publications
and other research outputs

In situ multi-frequency measurements of magnetic
susceptibility as an indicator of planetary regolith
maturity
Journal Item
How to cite:

Bentley, Mark S.; Ball, Andrew J.; Potter, David K.; Wright, Ian P. and Zarnecki, John C. (2009). In situ
multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity. Planetary and
Space Science, 57(12) pp. 1491–1499.

For guidance on citations see FAQs.

c© 2009 Elsevier Ltd

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.pss.2009.07.013

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82910998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1016/j.pss.2009.07.013
http://oro.open.ac.uk/policies.html


www.elsevier.com/locate/pss

Author’s Accepted Manuscript

In situ multi-frequency measurements of magnetic
susceptibility as an indicator of planetary regolith
maturity

Mark S. Bentley, Andrew J. Ball, David K. Potter,
Ian P. Wright, John C. Zarnecki

PII: S0032-0633(09)00229-3
DOI: doi:10.1016/j.pss.2009.07.013
Reference: PSS2723

To appear in: Planetary and Space Science

Received date: 30 January 2009
Revised date: 7 July 2009
Accepted date: 26 July 2009

Cite this article as: Mark S. Bentley, Andrew J. Ball, David K. Potter, Ian P. Wright
and John C. Zarnecki, In situ multi-frequency measurements of magnetic suscepti-
bility as an indicator of planetary regolith maturity, Planetary and Space Science,
doi:10.1016/j.pss.2009.07.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/pss
http://dx.doi.org/10.1016/j.pss.2009.07.013


Acc
ep

te
d m

an
usc

rip
t 

In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith 1

maturity2

3

Mark S. Bentleya,I, Andrew J. Balla,II, David K. Potterb, Ian P. Wrighta, John C. Zarneckia4

5

a Planetary and Space Sciences Research Institute, Centre for Earth, Planetary, Space and Astronomical 6

Research, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK7

b Department of Physics, University of Alberta, Edmonton. Alberta, Canada8

9

10

Corresponding author11

12

Mark S. Bentley13

Institut für Weltraumforschung14

Österreichische Akademie der Wissenschaften15

Schmiedlstrasse 616

8042 Graz, Austria17

18

Email: mark.bentley@oeaw.ac.at19

Tel: +43 (316) 41 20 65720

Fax: +43 (316) 41 20 49021

22

23

24

25

                                                     

I Present address: Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, 

Schmiedlstrasse 6, 8042 Graz, Austria

II Present address: SRE-PEH, ESA ESTEC, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk ZH, The 

Netherlands



Acc
ep

te
d m

an
usc

rip
t 

Abstract26

27

Space weathering is now generally accepted to modify the optical and magnetic properties of airless 28

planetary regoliths such as those on the Moon and Mercury. Under micrometeorite and ion bombardment, 29

ferrous iron in such surfaces is reduced to metallic iron spheres, found in amorphous coatings on almost all 30

exposed regolith grains. The size and number distribution of these particles and their location in the regolith31

all determine the nature and extent of the optical and magnetic changes. These parameters in turn reflect the 32

formation mechanisms, temperatures, and durations involved in the evolution of the regolith. Studying them 33

in situ is of intrinsic value to understanding the weathering process, and useful for determining the maturity of 34

the regolith and providing supporting data for interpreting remotely sensed mineralogy. Fine-grained metallic 35

iron has a number of properties that make it amenable to magnetic techniques, of which magnetic 36

susceptibility is the simplest and most robust. The magnetic properties of the lunar regolith and laboratory 37

regolith analogues are therefore reviewed and the theoretical basis for the frequency dependence of 38

magnetic susceptibility presented. Proposed here is then an instrument concept using multi-frequency 39

measurements of magnetic susceptibility to confirm the presence of fine grained magnetic material and 40

attempt to infer its quantity and size distribution. Such an instrument would be invaluable on a future mission 41

to an asteroid, the Moon, Mercury or other airless rocky Solar System body.42

43

44

Keywords: magnetic susceptibility, space weathering, planetary regolith, maturity45
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1. Overview of space weathering47

Amongst the first things to be noted on analysis of the Apollo and Luna samples brought to Earth was that 48

regolith samples had quite different magnetic and optical properties from rock samples, even those which 49

were chemically and mineralogically similar (Hapke et al., 1975). It became clear that these differences were 50

due to a surface maturation process operating in the upper few millimetres of the regolith. Various metrics 51

were defined to quantify the amount of time a particular regolith had been exposed in this way (Langevin and52

Arnold, 1977). These all rely on the cumulative effects of solar wind bombardment, micrometeorite impacts 53

and cosmic rays. Such weathering agents, and their effects on the regolith, are collectively known as space 54

weathering. The most durable of these metrics was the ferromagnetic resonance (FMR) index, defined as 55

Is/FeO, where Is is the magnitude of an observed resonance feature and FeO is the weight percentage of iron 56

oxide in the regolith (Morris, 1976).57

58

This strong absorption feature, measured with an electron spin resonance (ESR) spectrometer, is believed to 59

originate from spherical metallic iron grains of between approximately 4 and 33 nm in diameter (Morris,60

1976). These same grains are now understood to play a key role in the optical effects of space weathering,61

which result in the reddening, darkening and a reduction in spectral contrast of visible and near-infrared 62

(VNIR) reflectance spectra. The theory that vapour-deposited coatings might be responsible for the optical 63

and magnetic properties of the regolith was first advanced during the initial analyses of lunar samples 64

(Hapke et al., 1975) but was not verified until modern laboratory techniques were applied (Keller and McKay,65

1993). Theoretical modelling has also demonstrated that a vapour coating containing spherical metallic iron 66

grains can indeed replicate the optical effects of space weathering (Hapke, 2001). Various terms have been 67

used to describe this iron, in particular sub-microscopic metallic iron (SMFe) and nanophase iron (npFe0). As 68

this paper refers mainly to the magnetic properties of nanometre sized iron particles, the latter is perhaps 69

more appropriate here.70

71

Several missions, including the MESSENGER and BepiColombo missions to Mercury, the Dawn asteroid 72

mission and several lunar orbiters are currently scheduled to perform remote sensing of airless bodies, or 73

more specifically their regoliths. Determining surface mineralogy from such measurements is greatly 74

hindered by space weathering. The spectral alteration can in fact be so severe as to mask completely weak 75

absorption features, making even mineral identification impossible, let alone quantitative comparisons.76

77
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Ideally, all remote sensing measurements would be supported by in situ, ground truth, data. If the same 78

weathering processes that occur on the Moon also play key roles on other airless bodies, ferromagnetic 79

resonance should be a useful measurement on those as well. ESR spectrometers work by applying a 80

magnetic field across a sample, causing unpaired electrons to align their magnetic moments either parallel or 81

anti-parallel to the field. These two states have different energy levels, with a separation determined by the 82

strength of the applied field and the gyromagnetic ratio (the “g-factor”), which is modified from the free 83

electron value by the electronic environment of the nucleus. A transition can be induced between these two 84

states by the absorption of electromagnetic radiation with the same photon energy as their separation. Thus 85

an absorption spectrum can be produced by varying either the frequency of applied radiation or the strength 86

of the magnetic field. The nature of such spectra can reveal much about the environment of the unpaired 87

electrons, which in inorganic materials are typically associated with transition metals. In ferromagnetic 88

materials, such as the metallic iron grains found in the lunar regolith, the resonance feature is orders of 89

magnitude stronger than that seen in a paramagnetic material, due to the coupling of spins. The frequency 90

and field strength at resonance are used to derive the g-factor, which varies from the free electron value of 91

approximately 2.0 according to the electronic structure; most lunar samples measured have values of 92

2.10 ± 0.03 (Manatt et al., 1970).93

94

Typical laboratory ESR spectrometers are necessarily massive and unwieldy pieces of equipment, using 95

large electromagnets to generate substantial magnetic fields (typically on the order of hundreds of milli-96

Tesla). A fixed monochromatic source of microwave energy is usually employed and the reduction in 97

received energy monitored as the magnetic field strength is scanned.98

99

Miniaturised ESR/EPR spectrometers have been proposed for planetary missions (Kim et al., 2004). In such 100

instruments, it is typically the microwave frequency that is scanned whilst the magnetic field strength is held 101

constant. Two configurations were developed by Kim et al. (2004), one requiring sample ingestion and the 102

other a “contact sensor” using a microstrip resonator. Such an instrument has been suggested to search for 103

organic radicals on Mars and to identify radiation damage in minerals (Yen and Kim, 2004). This approach 104

leads to a considerably lower mass and power than laboratory equipment; the field prototype had a mass of 105

only 1.7 kg.106

107

This reduction in mass is very promising and should be further developed. However, this paper proposes a 108

much more compact instrument concept which uses multi-frequency measurements of magnetic 109
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susceptibility to infer the presence of sub-microscopic iron. Theoretically it could have a mass an order of 110

magnitude less than the ESR instrument. Additional data that could be provided by such a sensor include111

basic magnetic mineralogy and electrical conductivity of the regolith.112

2. Magnetic properties of extraterrestrial regoliths113

2.1. The lunar regolith114

Since most of our understanding of space weathering derives from the Moon, the case of the lunar regolith 115

will be discussed first. Metallic iron in lunar regoliths is thought to derive from several sources: direct 116

meteoritic input (e.g. from metal-bearing meteorites), reduction of hydrogen-rich regolith as a result of 117

micrometeorite impact heating (hydrogen having been implanted from the solar wind) and the production of 118

surface-correlated iron from the re-condensation of vapour produced in solar wind sputtering and 119

micrometeorite impacts. Subsequent gardening of the regolith can result in this iron being re-worked into the 120

regolith, for example becoming bound into agglutinates. One possible way of distinguishing these sources of 121

iron is by their grain size range and their location in the regolith (Morris, 1980), although thermal annealing 122

processes can increase grain sizes over time (Noble and Pieters, 2003) and so this approach is not uniquely 123

diagnostic. Determining the relative contributions of these processes on the Moon is important for 124

understanding their differing contributions throughout the Solar System, which should scale with factors 125

including the heliocentric distance, the size of the body, presence of a magnetic field etc.126

127

In terrestrial geology, magnetic susceptibility is primarily dominated by iron oxides such as the 128

titanomagnetite series (Carmichael, 1989). Magnetism on Mars is also believed to be dominated by iron 129

oxides and sulfides (Rochette et al., 2005). In the lunar (Fuller and Cisowski, 1987), and by analogy 130

Mercurian or asteroidal, environments such oxidised minerals are not readily formed. Extensive analysis of 131

lunar samples has shown that the main carriers of ferromagnetism on the Moon are metallic iron and iron-132

nickel grains. As such, magnetic susceptibility (�) should correlate well with the amount of metallic iron in the 133

regolith. It has in fact been shown for a limited set of samples that �/FeO correlates extremely well with 134

Is/FeO and so should make a good maturity index (Oder, 1992). This normalisation to the weight percentage 135

of FeO is required since the amount of metallic iron is related to both the degree of weathering and the 136

amount of iron oxide in the original, unweathered, material.137

138
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Although no such in situ extraterrestrial measurements have been made, low field magnetic susceptibility 139

(that is, magnetic susceptibility measured at a field too low to produce irreversible changes in the sample 140

magnetisation) has been measured in the laboratory for many samples of lunar regolith. The typical range of 141

mass susceptibility for lunar regoliths is around 1400 – 4400 10-8 m3 kg-1 (Carmichael, 1989), depending on 142

the mineralogy and maturity of the sample.143

144

Magnetic susceptibility is, of course, not a unique measurement of iron content. The majority of lunar 145

minerals are paramagnetic and the total susceptibility also reflects their various contributions. However, the 146

cumulative effects of weathering are understood to increase the ferromagnetic metallic iron content in the 147

regolith as it matures. Although the susceptibility of this iron is a complicated function of temperature and 148

grain size, it is always considerably larger than the paramagnetic susceptibility. Thus only a few wt% of 149

metallic iron, as found in a mature lunar soil, can dominate the magnetisation of such a sample.150

151

Ferromagnetic susceptibility is critically dependent on the magnetic domain state of the magnetic carrier. 152

Large iron grains will be multi-domain (MD), such that neighbouring domains are oriented with opposing 153

magnetic polarities in order to reduce magnetostatic energy. It is relatively easy to change the magnetisation 154

of such a material and hence the coercivity is low. Below a critical size, this energy saving is less than that 155

required to split a single domain into two, and hence the material will remain single domain (SD). In this 156

state, ferromagnetic materials are strongly resistant to magnetic change and hence have a higher coercivity. 157

It is magnetite grains of this type that allow the Earth’s geomagnetic signature to be recorded and retained 158

over geological timescales. Even so, any acquired magnetism decays over time in an exponential fashion, 159

described by its relaxation time. As the grain size is decreased further, thermal effects become important. At 160

a critical temperature and size, thermal agitation overcomes the magnetic ordering and the atomic moments 161

of such particles are free to orient with an applied magnetic field. Such particles will behave like 162

paramagnets, but with a vastly greater magnetic moment and magnetic susceptibility, and hence are called 163

superparamagnetic (SPM). Usually, a material is considered SPM if its relaxation time is comparable to or 164

smaller than the measurement time in a typical experiment (i.e. if its decay is observed). The boundary 165

between SD and SPM grains in a given sample is therefore a function of the experiment being performed 166

and the temperature of the sample. Figure 1 shows a plot of the variation of susceptibility of metallic iron 167

grains at room temperature with size, based on Néel theory (Néel, 1949) and following Stephenson (1971a), 168

which demonstrates how SPM particles can have a magnetic susceptibility an order of magnitude larger than 169

SD grains; this figure will be discussed in more detail later.170
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171

[Figure 1]172

173

Metallic iron with characteristic of all of these size ranges (SPM, SD and MD) has been detected via 174

magnetic measurements of lunar materials, although a large proportion of the Fe0 in mature regolith is 175

superparamagnetic (Dunlop and Özdemir, 1997). Theoretical studies have shown that the range of sizes and 176

shapes possible for SD metallic iron are rather small, and almost non-existence for spherical grains (Butler 177

and Banerjee, 1975). These authors calculate that only 9% of the metallic iron the lunar regolith need be 178

single domain to reproduce the measured magnetic characteristics. Somewhat oblate spheroid grains, for 179

example with an elongation of only 10%, are sufficient to fulfil this criterion. The FMR signature, however, 180

arises from grains that are single domain and close to spherical (and hence have negligible shape 181

anisotropy). Thus it is likely that metallic iron grains dominated by both magnetocrystalline (spherical) and 182

shape (spheroid) anisotropy are present in the lunar regolith.183

184

It is, however, the presence of extensive SPM material in lunar regoliths which dominates their magnetic 185

susceptibility. The proportion of SPM grains is, in turn, a function of space weathering. It can be seen that 186

measuring the initial magnetic susceptibility of a sample in situ, coupled with measurements of bulk 187

composition from complementary instrumentation, should give a good first indication of the degree of regolith188

maturity and hence the degree of spectral alteration that should be expected in, and ideally removed from,189

remote reflectance spectra.190

191

Simple but effective models have shown that a given reflectance spectrum of an un-weathered material can 192

be numerically manipulated to simulate weathering by the linear addition of a volume and surface correlated 193

component of metallic iron (Hapke, 2001). In practice, the spectrum is inverted to obtain the single scattering 194

albedo using a simplified radiative transfer model. Once the complex refractive index of the measured 195

sample has been obtained, this is combined with the optical constants of metallic iron and the process 196

reversed. The size of the host grains, the weight percentage of fine grained iron and the distribution between 197

surface and volume correlated iron are all critical parameters in this model.198

199

Thus in situ measurement of the amount and size distribution of metallic iron could theoretically allow 200

weathered spectra to be inverted to yield the un-weathered properties. Unfortunately this is a non-trivial task 201

even in a terrestrial laboratory. Attempts have been made to measure the size distribution of metallic iron 202
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spherules in a small subset of lunar samples by SEM and TEM (James et al., 2003), but this clearly is not 203

useful for in situ investigation.204

2.2. Other Solar System regoliths205

The discussion of regoliths here applies mainly to airless bodies, where both solar and micrometeorites 206

regularly impinge upon the surface. However, evidence from Martian meteorites also points to a mechanism 207

for impact shock metamorphism of olivine to produce similar nanoparticles, probably during larger impacts 208

and over a larger spatial scale (Van de Moortèle et al., 2007).209

210

Mercury is also most likely a highly weathered surface, as its location in the inner Solar System results in a 211

high impact flux and greater average impact velocities than at the Moon (Cintala, 1992). However, the 212

intrinsic magnetic field discovered by Mariner 10 and verified recently by Messenger (Anderson et al., 2008)213

is expected to stand off the solar wind, at least some of the time, limiting the role of solar wind sputtering, at 214

least at certain combinations of latitude, heliocentric distance and solar condition.215

216

Asteroidal regoliths are also of great interest, and here it should be noted that the presence of a magnetic 217

field can also play a role, again preventing access to the surface of a body. In the asteroid belt, where solar 218

wind sputtering might be expected to dominate over impacts, weathering could potentially be inhibited 219

(Vernazza et al., 2006).220

221

2.3. Laboratory regolith analogues222

The motivation for this paper derived from laboratory experiments performed to simulate the space 223

weathering process, with particular reference to Mercury. In these experiments (Bentley, 2004; Bentley et al., 224

in preparation), powdered olivine samples were irradiated under vacuum with a pulsed IR laser to simulate 225

the weathering process. As with previous experiments (e.g. Sasaki et al., 2001) this resulted in optical 226

changes resembling those seen to have occurred in lunar samples. A variety of magnetic techniques was227

then used to characterise the changes, including ESR spectroscopy, vibrating sample magnetometry and 228

multi-frequency measurement of the magnetic susceptibility.229

230

In these latter experiments (Bentley et al., in preparation), a Bartington MS2-B sensor was used to record the 231

magnetic susceptibility before and after irradiation. This instrument uses an AC technique with a field 232
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strength of approximately 250 �T (peak) and measurement frequencies of 0.465 kHz and 4.65 kHz. These 233

frequencies are sufficiently low that any conductive losses should be minimal. Samples of San Carlos olivine, 234

sieved to < 63 �m and each with a mass of 2 g, were measured using the Bartington device before and after 235

irradiation. The total bulk magnetic susceptibility of the samples typically increased several-fold after 236

irradiation, as might be expected if paramagnetic ferrous iron is being reduced to metallic iron. Additional 237

evidence from ESR spectroscopy and other magnetic methods support the hypothesis that metallic iron, 238

some of it superparamagnetic, is produced.239

240

The increase in bulk susceptibility can be used to make a first, coarse, estimate of the amount of metallic iron 241

that could cause such a change. As an example, one such experiment showed an increase in mass specific 242

magnetic susceptibility after irradiation of 8.79 ± 0.09 × 10-8 m3 kg-1. If it is assumed that the increase derives 243

solely from the production of multi-domain metallic iron, which has a room temperature initial susceptibility of 244

3.77 × 10-4 m3 kg-1 (Stephenson, 1971b), this corresponds to only 0.023 wt%, or substantially less if a 245

sizeable fraction is superparamagnetic, and hence has a susceptibility up to 66 times higher (Stephenson,246

1971a)! Clearly this technique is highly sensitive to the changes attributed to space weathering, which can 247

produce several wt% metallic iron in mature lunar regolith. 248

249

The Bartington device also allowed investigation of the frequency dependent nature of the sample. The un-250

irradiated samples showed an identical susceptibility at both frequencies, within experimental errors. The 251

same samples after irradiation, however, showed a coefficient of frequency dependence (CFD) of over 4%. 252

Typically a CFD of less than two percent is measured if the material contains no SPM grains, a value in the 253

range 10 – 14% is found for a sample containing virtually all SPM grains and a value in the middle has a 254

mixture of SPM and coarser grains (Dearing, 1999). This frequency dependence arises as a result of the two 255

measurement frequencies corresponding to two different observation times, each of which defines a different 256

SD/SPM threshold; the theoretical explanation for this behaviour will be discussed later.257

258

There is hence a clear rationale for making in situ measurements of magnetic susceptibility; it can provide an 259

estimate of the metallic iron content and detect the presence of SPM particles. The following section 260

describes how such a sensor might be developed for making a contact measurement on a planetary lander, 261

rover or penetrator and discusses the major hurdles and the operational and calibration difficulties arising.262
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3. An in situ magnetic susceptibility instrument for planetary regolith maturity determination263

3.1. Methods of measuring magnetic susceptibility264

Methods of measuring magnetic susceptibility can be divided into two categories. The first measures the 265

force experienced by a sample placed in a magnetic field gradient. In the laboratory, the Evans and Faraday 266

balances are examples of this type. The second uses electromagnetic induction. In the simplest setup, an 267

alternating current is applied through a coil. The sample to be measured is placed inside, or close to, the coil. 268

Magnetic susceptibility is directly related to magnetic permeability [μ = μ0(1 ����], which in turn is related to 269

the inductance of a coil immersed in a medium. The required measurement is therefore one of inductance, 270

which can be performed quite simply by a variety of electrical circuits. Typically, AC bridges are used to 271

measure an unknown inductance, in which the resistive and reactive components of the inductance must be 272

separately balanced (Collinson, 1983). In this configuration, when the bridge is unbalanced by the presence 273

of a sample, either the off-balance current can be read, or the bridge can be balanced again to give a zero-274

current at the null detector. It should again be pointed out that both the real and imaginary parts of the 275

complex magnetic susceptibility are of interest here, and thus these should both be measured. Hence some 276

phase discrimination, or lock-in amplifier is needed to record both the signal in phase with the driving 277

alternating field and that in quadrature (�/2 out of phase). 278

279

For a single coil configuration, the self inductance change due to the magnetic susceptibility of surrounding 280

material is purely reactive, resulting in a change in the quadrature component of the coil impedance. In 281

reality it is likely that the surrounding medium has a non-zero electrical conductivity. Induced currents flowing 282

through the medium also modify the effective resistance of the coil and this must be accounted for. In such a 283

configuration, the inductance change is usually measured by observing the change of frequency of an LCR 284

circuit in which the inductor is coupled to the sample material.285

3.2. The benefit of multi-frequency AC measurements286

The measurement of initial magnetic susceptibility at a single frequency can be very useful; the Apollo 287

sample collection has been extensively characterised in this way, and more recently it has been used to 288

classify stony meteorites (Rochette et al., 2008) – a technique that has also been proposed for in situ use 289

(Rochette et al., 2004). The additional benefits gained from performing the measurement at several oscillator 290

frequencies are discussed here.291

292



Acc
ep

te
d m

an
usc

rip
t 

The utility of multi frequency measurements can be explained with reference to the work of Néel (1949), who293

showed that the relaxation time (�) for a collection of uniformly magnetised (i.e. SD), non-interacting uniaxial 294

grains is related to the volume (v), temperature (T), saturation magnetisation (js) and microscopic coercivity 295

(hc) of these grains, by equation 1, where k is the Boltzmann constant and f0 is a constant, approximately 296

109 s-1 for iron.297

298

�
�
�

�
�
�	
kT
jvh

f
sc

2
exp1

0


 Equation 1299

300

The coercivity depends on the dominant anisotropy in the material, which in metallic iron is either 301

magnetocrystalline (spherical grains) or shape (non-spherical grains), and using an AC technique the 302

measurement time can be taken as the inverse of the frequency. A spherical iron grain has a microscopic 303

coercivity dominated by magnetocrystalline anisotropy, given by hc = 2K1 / js, where K1 is the uniaxial 304

anisotropy constant. A value of 4.8 × 104 J m-3 will be used here (Dunlop and Özdemir, 1997), although 305

considerably higher values have been reported for iron nanoparticles (Lacroix et al., 2008).306

307

Knowing these parameters, it is possible to calculate the grain volume (the critical volume) at the boundary 308

between stable single-domain (SD) and superparamagnetic (SPM) grains, and hence the critical grain 309

diameter. For example, in a 1 kHz measurement of a collection of spherical metallic iron grains, this 310

boundary occurs at a diameter 20.3 nm. In other words, grains smaller than this are SPM, whilst those larger 311

are SD. This is of course only strictly applicable for a material comprising SD grains of a single size. In reality 312

a range of grain sizes is likely to be present, resulting in a spectrum of decay times, blocking temperatures 313

and volumes. In addition, the saturation magnetisation depends on temperature, although can be considered 314

constant well below the Curie point (Stephenson, 1971a), and the coercivity depends on both grain size and 315

temperature. Nevertheless these approximations are sufficient to explain the fundamental behaviour of fine 316

particle magnetism with respect to frequency.317

318

With re-arrangements of Equation 1, it can be seen that the critical volume is proportional to the logarithm of 319

the measurement time, and so increasing the frequency (decreasing the measurement time) moves the 320

boundary to smaller grain sizes. As a result, a material with a significant amount of very fine-grained 321

ferromagnetic material will experience a decrease in total magnetic susceptibility with increasing frequency, 322

as proportionally more grains become SD. As an example, the Bartington magnetic susceptibility instrument 323
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referred to earlier uses measurement frequencies of 0.465 kHz and 4.65 kHz, corresponding to transition 324

grain diameters of 20.7 nm and 19.5 nm, respectively. Thus a decrease in the measured susceptibility 325

between these two frequencies can be explained by the presence of spherical iron grains in this grain size 326

range. This can be readily observed in Figure 1 by imagining a grain with diameter 21 nm, for example. In an 327

AC measurement at 1000 Hz this grain is single domain, however at 100 Hz this same grain is SPM and has 328

a magnetic susceptibility 14.5 times larger.329

330

Thus direct measurements of magnetic susceptibility with frequency can be used to make inferences about 331

the size distribution of magnetic carriers, however the logarithmic nature of the frequency dependence 332

results in a rather limited iron particle size range. Figure 2 demonstrates this on a plot of SPM/SD transition 333

diameter for metallic iron at room temperature as a function of frequency. It still, however, provides a 334

mechanism for performing a limited degree of magnetic granulometry and at the least is a useful indicator of 335

the presence of superparamagnetic materials. Such a dual frequency measurement, if it had been carried 336

out on the NEAR spacecraft, could have provided additional vital evidence about the nature of space 337

weathering on asteroids.338

339

[Figure 2]340

341

Since the blocking volume also depends on temperature, knowledge of the regolith temperature would also 342

be required. If deployed as part of an instrumented sensor package such as the proposed HP3 mole concept343

(Spohn et al., 2001), such high precision temperature measurements would already be included.344

3.3. Complementarity to other measurements345

It is worth considering what instrument package might be deployed in a future mission, and hence what 346

synergy can be drawn from flying a magnetic susceptibility instrument alongside more traditional instruments.  347

This section therefore discusses typical in situ instruments that make complementary measurements, and 348

how these measurements might be related.349

3.3.1. Mössbauer350

The most obvious complementary measurement is that of Mössbauer spectroscopy, which is specifically 351

tailored to the study of iron and iron bearing materials. In nano-scale materials, such as superparamagnetic 352

iron, the magnetic ordering of larger particles is not present. As such, the magnetisation in the absence of an 353
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applied field orients randomly, leading to a net zero hyperfine magnetic field. The signature for SPM iron is 354

therefore a singlet situated at zero velocity, while larger iron grains appear as a distinctive sextet.355

356

As seen previously, the determination of whether a particle is SD or SPM is made by both the sample 357

temperature and the so-called “observation time”. In the case of a Mössbauer measurement, this time 358

corresponds to the duration of a Larmor precession of the 57Fe nucleus and is of order 10-8 s. For spherical 359

metallic iron room temperature this results in a blocking diameter of approximately 11 nm. As a result, much 360

of the iron seen as SPM with typical AC susceptibility measurements will be SD in a Mössbauer361

measurement.362

363

Measurements of lunar samples have shown that both SD and SPM iron can be detected with Mössbauer364

spectroscopy (e.g. Morris et al., 1998). The remaining question is whether an in situ instrument would have 365

sufficient sensitivity to detect such metallic iron. For example the lunar regolith contains on average 366

approximately 0.5 wt% metallic iron, with 0.20 ± 0.10 wt% in the size range 0.4 – 30 nm (Morris et al., 1998)367

The MIMOS II instrument operating on the Mars Exploration Rover (MER) vehicles is capable of detecting 368

magnetite and hematite at the 1-2% level (Klingelhöfer et al., 2003). Newer generations of the instrument 369

(e.g. MIMOS-IIa) are expected to show a significant improvement in sensitivity, however, thus making space-370

borne Mössbauer and multi-frequency magnetic susceptibility measurements complementary (i.e. probing 371

different SD/SPM thresholds).372

3.3.2. Near-IR373

Visible and near-IR reflectance spectroscopy are powerful tools to determine mineralogy remotely, typically 374

from orbit. However, it is becoming more common for landed elements to also carry such an instrument, 375

integrated, for example, into a microscope for close-up analysis. Comparison of the spectral properties of 376

rocks and regolith on a small scale with their magnetic properties would be a useful combination to confirm 377

the local effects of space weathering. These data could then be extrapolated to gain an understanding of 378

global weathering properties from orbital remote sensing data.379

3.3.3. XRS380

X-ray spectroscopy (XRS) of asteroid 433 Eros has been used to argue in favour of a space weathered 381

surface, showing that the minor element ratios correspond well with those of ordinary chondrites (Foley et al.,382

2006) and suggesting that this supports space weathering as the agent of sulphur depletion, rather than 383



Acc
ep

te
d m

an
usc

rip
t 

partial melting. Space weathering preferentially removes the volatile components of the regolith, whilst 384

leaving the abundances of rock forming minerals unchanged. Melting would, on the other hand, also change 385

the ratios of other elements. Such indirect evidence for space weathering can therefore be measured with 386

such techniques. However, the primary space weathering process (responsible for the major optical and 387

magnetic effects) is a change of oxidation state, and the formation of metallic iron. This is more directly 388

addressed by magnetic or Mössbauer measurements. Thus magnetic susceptibility and XRS are excellent 389

complementary measurements for studying weathering and potential elemental depletion processes.390

3.4. Instrument design and development391

Although no magnetic susceptibility sensor has yet been successfully deployed on a planetary surface, there 392

is a rich history of proposed instruments and scientific rationales. In the pre-Apollo era, magnetic 393

susceptibility was proposed as part of a surface and downhole instrument suite designed for characterising 394

the lunar surface (Texaco, Inc., 1961). This suite was developed to breadboard level, but was of a similar 395

size to terrestrial equipment.396

397

Magnetic susceptibility instrumentation was then proposed as a future surface instrument after initial analysis 398

of the lunar samples (Housley, 1977). Recent measurements of the terrestrial meteorite collection (Rochette 399

et al., 2003 and 2008) have suggested the use of such a sensor on future asteroid (Rochette et al., 2004)400

and Mars (Rochette et al., 2006) missions. Finally, with attention turning to a human return to the Moon, 401

magnetic susceptibility has been again proposed for identifying useful in situ resources; in fact the SPM 402

metallic iron particles that are the key to space weathering could also allow the production of lunar “bricks” 403

due to their absorption of microwave energy (Taylor and Meek, 2005).404

405

A magnetic susceptibility instrument has been launched once previously, on the Phobos 2 mission. Carried 406

onboard the PROP-F “hopping” lander (Kemurdzhian et al., 1988), it was a contact sensor using an AC 407

bridge technique designed to make measurements of the magnetic susceptibility of Phobos at each hop408

(Dolginov et al., 1989). Unfortunately contact was lost with the orbiter before PROP-F was due to be 409

deployed, so no measurements were made.410

411

The utility of making multi-frequency magnetic susceptibility measurements should now be clear. However, 412

to describe a credible instrument concept, a set of top-level science and instrument requirements must be 413

defined. The range of expected values for bulk initial magnetic susceptibility must be chosen for the target 414
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mineralogy; in lieu of detailed knowledge, one can baseline a range sufficient to cover typical lunar regolith415

samples (1400 - 4400 10-8 m3 kg-1 (Carmichael, 1989)). With laboratory instruments, a decade of frequency 416

difference is typically enough to establish the presence of SPM material, but this naturally depends on the 417

measurement accuracy of a field device. Extending this range will help, but will also enhance the ability of 418

such an instrument to perform magnetic granulometry. As noted, however, higher frequencies result in 419

additional energy dissipation in conductive samples due to the generation of eddy currents, but this can in 420

itself be useful for measuring electrical conductivity, if proper care is taken.421

422

Of course this measurement cannot be made remotely and requires the sensor to be close to the regolith, 423

ensuring flux linkage with the material being measured. Several deployment mechanisms can be considered 424

for different mission profiles. As with all such sensors, mobility (horizontal or vertical) adds greatly to the 425

utility of the data and a magnetic susceptibility sensor could be deployed on a rover or even a sub-surface 426

penetrating mole. If deployed on a long-range rover, the opportunity is presented for recording maturity data 427

at several locations, for comparison with orbital data. This is vital for bodies other than the Moon where we 428

do not have the laboratory data to calibrate remote sensing techniques for separating compositional and 429

maturity variations, as has been performed for the Moon (Lucey et al., 2000). Alternatively, a mole-borne 430

sensor would be extremely useful for obtaining depth profiles and examining the stratigraphy of a single 431

location. Regolith cores extracted on the Moon show that there is a complex intermixing of layers of different 432

maturities at any given location, with a general trend towards decreasing maturity with depth (Basu and 433

McKay, 1995). Such a sensor would be able to examine this in situ for other bodies. In addition there is some 434

evidence for shock-produced fine-grained iron, which might be expected in a given layer with some lateral 435

extent, following a large impact (Cisowski et al., 1973). Layers of differing maturity could also be accounted 436

for by the creation of a palaeoregolith, in which layers of regolith with a given maturity are “sandwiched” 437

between lava flows of low susceptibility (Crawford et al., 2007). 438

439

Low mass and power magnetic susceptibility instruments already exist commercially for terrestrial 440

applications, and have a suitable range and resolution for the measurements described here. Of course 441

these are not space qualified and substantial re-development would be required before flight. Some of the 442

potential issues that would arise are discussed here.443

444
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3.4.1. Coil geometry445

Of fundamental importance to any magnetic susceptibility instrument is the design of the coils. A choice of a 446

single coil (operating by self inductance) or multiple coils (mutual inductance) must first be made. There are 447

several advantages to a multi-coil design. Temperature variations affect both coils equally and so 448

temperature drifts are minimised. In addition, the geometry of the magnetic field can be optimised to focus 449

the region of investigation, resulting in finer spatial resolution, important for investigating layered structures in 450

a regolith, for example. The volume of material probed also depends on the spacing of the coils. Finally, 451

compensating coils can be used to minimise direct coupling between the transmitter and receiver. Once this 452

decision has been made, the coil geometry must be optimised for the configuration and application. The aim 453

is to ensure maximum flux linkage with the medium in question; however additional constraints such as the 454

available volume and geometry must be taken into account.455

456

Several coil geometries could be considered, in particular a planar configuration in which the transmitter and 457

receiver coils are arranged for a contact measurement, for example in the foot of a lander, rover wheel 458

(measuring once per revolution, and allowing a free-space calibration in between) or at the end of a robotic 459

arm. Alternatively a 3-coil linear arrangement, which could be included in an instrumented mole, can be 460

considered. The central coil can either be a transmitter or receiver, with a matched pair playing the opposite 461

role. However, other configurations could be considered, for example incorporating the coils into tracks on a 462

flexible substrate mounted on the inner wall of the mole and avoiding the difficulty of passing signal-carrying 463

wires through the coil.464

3.4.2. Calibration465

Since measurement of susceptibility using an AC bridge is a relative technique, some method of calibration 466

is required before each measurement. On the Earth this is performed by making a measurement away from 467

any magnetic material, essentially giving a “zero”. In the confines of a lander, and in particular during the 468

penetration of a subsurface mole, this may be impractical.469

470

Aside from zeroing in free space, the only realistic option that does not involve deployment booms, arms or 471

other mechanisms, is to measure a known material when in close proximity to the sensor. If deployed in a 472

mole, the hammering mechanism could offer a ready solution to this problem by manufacturing the 473

mechanism from a magnetic alloy with stable properties. During each cycle a zeroing measurement could be 474

made when the hammer was close to the sensor. However, a suitable material must be found that has 475
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properties that do not change over time, with temperature, and with the energising frequency etc.476

Alternatively a single-point calibration can be performed by incorporating a calibration material into the 477

housing of the instrument deployment mechanism.478

479

A secondary issue is calibration of the volume over which the sensor integrates. Measurements of volume 480

susceptibility rely on the sample filling the volume over which the sensor is sensitive. Even so, density 481

changes in a material can be mistakenly recorded as a difference in magnetic susceptibility. For this reason 482

laboratory measurements are often made using mass specific susceptibility, which is normalised by the 483

sample mass (and hence density). Since in situ measurements cannot easily determine the sample mass, 484

additional steps must be taken to ensure consistent values.485

486

Gattacceca et al. (2004) have shown a method for determining the integration volume of an AC magnetic 487

susceptibility sensor based on measurements alone. This relies on taking measurements at different 488

distances from the sample, such that a different fraction of the integration volume is filled (and recorded) at 489

each distance. This method is suitable for deployment on a rover or robotic arm, but not on a mole. In this 490

case measurement of the bulk density surrounding the instrument could be used to ensure inter-491

comparability between measurements. Such a sensor, using gamma backscatter densitometry, has already 492

been proposed and built to a breadboard level in a prototype of the HP3 mole-borne instrument package 493

(Ambrosi et al., 2006; Spohn et al., 2001). 494

495

A final point to note is that such a sensor would be rather sensitive to the presence of metal in the instrument 496

housing, or indeed the host spacecraft itself. This can already be seen from laboratory measurements where 497

care has to be taken over the location of the instrument; conductive losses reduce the measured magnetic 498

susceptibility. There are therefore some additional restrictions placed on where and how a magnetic 499

susceptibility sensor can be mounted.500

3.4.3. Thermal and mechanical stability501

The value of inductance of a coil is strongly affected by the mechanical stability of the coil windings. Careful 502

choice of the (electrically insulating) former would have to be made to ensure a consistent inductance over 503

the expected temperature range. Continuous measurement of temperature and also “blank” measurements 504

of a calibration material before and after measurement of the actual sample can both be used to remove this 505

drift from the measured value.506
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507

While temperature stability of the coil is vital, additional science is possible if the sample temperature can be 508

varied, either actively within the instrument, or passively during, for example, a diurnal cycle. An ideal 509

instrument design would allow the sample to be heated whilst insulating the coil itself from such changes, 510

maintaining the stable oscillator frequency. This is discussed further in section 3.5.511

3.4.4. Choice of frequency512

One of the critical parameters in making an AC susceptibility measurement is the frequency at which the 513

oscillator is energised. In typical magnetic susceptibility meters, a low frequency is used to prevent 514

conductive losses in the sample medium. However, this must be traded against the desire to increase the 515

frequency range (and hence the iron particle size range) available for magnetic granulometry of 516

superparamagnetic grains.517

3.5. Additional science518

Not only can such a sensor measure the bulk magnetic susceptibility and search for the superparamagnetic 519

iron indicative of space weathering, but it can also potentially measure electrical conductivity and magnetic 520

mineralogy. When recording magnetic susceptibility in a two-coil (transmitter and receiver) configuration, the 521

response of the coil is measured in phase with the driving current, but the quadrature component is also 522

useful, providing a measure of electrical conductivity. Indeed this technique is often used in terrestrial 523

borehole logging. The internal magnetic field generated by the movement of domain walls and the rotation of 524

domain magnetic moments corresponds to the magnetic susceptibility of the sample and this results in the 525

in-phase signal. The quadrature component represents losses in the sample, from both magnetic hysteresis 526

and eddy currents. Thus the magnetic susceptibility is written as a complex quantity when frequency is 527

considered. As well as being of intrinsic scientific interest, electrical conductivity is of particular interest at the 528

surface of Mercury, where it has been suggested that surface conductivity may play a role in the closure of 529

field aligned currents believed to be generated during magnetic substorms, first detected by Mariner 10530

(Janhunen and Kallio, 2004).531

532

Another common technique in terrestrial geomagnetic laboratories is thermomagnetic analysis, whereby the 533

magnetic susceptibility is recorded as a function of temperature. Ferromagnetic materials will show a sudden 534

drop in susceptibility at their Curie temperature. Hence measurements of a particular regolith sample over a 535

range of temperature could aid in the identification of magnetic phases, as previously suggested by Rochette 536
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et al. (2004). These temperature changes could either be natural, such as those due to diurnal oscillations, 537

or as a result of active heating. Building a coil around, for example, the oven of another instrument might be 538

a way of making magnetic measurements over a range of temperatures. In addition, Equation 1 539

demonstrated that temperature also controls the critical grain size, and thus heating a sample shifts the 540

superparamagnetic boundary to larger particle sizes, allowing a small degree of granulometry as seen in 541

Figure 3. Again, the dependence is weak, but nonetheless useful. In terrestrial laboratories samples 542

measured in this way inevitably partially oxidise, however much care is taken, but the vacuum environment 543

of an airless planetary body is ideal for such measurements. It has also been shown that the shape of the 544

thermomagnetic curve far below the Curie point is also diagnostic of the size distribution of a single domain545

ensemble (Stephenson, 1971a).546

547

[Figure 3]548

4. Conclusions549

Micrometeorite impacts and solar wind sputtering are now understood to produce nanophase metallic iron 550

from ferrous iron in airless planetary regoliths during the regolith maturation / space weathering process. 551

Metallic iron is ferromagnetic and hence amenable to a wide range of magnetic techniques.552

553

Magnetic susceptibility is known to correlate well with the more frequently used ferromagnetic resonance 554

index used to describe regolith maturity and thus is a useful parameter for understanding the regolith 555

evolution at a given location. In addition, multi-frequency measurements of susceptibility can be used to 556

identify the very fine grained SPM iron particles resulting from space weathering. Definitive confirmation of 557

space weathering as the agent of spectral alteration on asteroids and other planetary surfaces besides the 558

Moon would be extremely useful.559

560

Laboratory weathered regolith analogues have confirmed both an increase in initial susceptibility and the 561

introduction of a frequency dependence, along with lunar-like spectral alteration, for even low degrees of 562

alteration. Thus a multi-frequency magnetic susceptibility sensor has been proposed as a means of 563

identifying and potentially quantifying the effects of space weathering in a planetary regolith surface. Direct 564

granulometry with this technique has a rather limited range, but coupled with temperature dependent 565

measurements and complementary instrumentation inferences could nonetheless be made. Such data could 566
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eventually be used with models of the spectral alteration process to remove some of the changes caused by 567

space weathering from remote spectra.568

569

This measurement could be carried out most easily by an AC method in which the change in inductance of a 570

coil placed close to a sample provides a measure of magnetic susceptibility. Terrestrial instruments with low 571

mass and power exist, but the challenges in developing a space-borne instrument are not trivial. In 572

particular, the thermal stability of the instrument is key to achieving a high precision measurement. 573

Deployment as part of a mole-borne instrument suite including temperature and density measurements 574

would be extremely complementary, but the required high level of miniaturisation and integration and risk of 575

potential interference suggest that a surface contact instrument may be more feasible.576

577

Additional properties that could be measured with such an instrument include mineralogy (through Curie 578

point identification if the sample temperature can be varied), and electrical conductivity. Measurements of the 579

susceptibility with temperature can also help to further constrain the metallic iron grain size distribution.580
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Figure captions750

751

Figure 1. Theoretical calculation of the size dependence of volume magnetic susceptibility of spherical 752

metallic iron at room temperature. Several different AC measurement frequencies are shown, and the 753

susceptibility is scaled relative to that of SD grains for comparison. It can be seen that SPM grains can have 754

a susceptibility an order of magnitude higher than SD grains, and that the SPM/SD boundary shifts to smaller 755

grains as the measurement frequency increases.756

757

Figure 2. The SD/SPM boundary for metallic iron grains at room temperature as a function of frequency, on a 758

logarithmic scale. It is clear that the nature of the dependence allows only a small degree of granulometry to 759

be performed. Realistically, measurements would likely only be performed at low frequencies where 760

dissipative effects can be avoided.761

762

Figure 3. The SPM/SD boundary changes with temperature as well as frequency, although again the 763

dependence is relatively weak. In reality the curve is more complex since other parameters, for example the 764

saturation magnetisation, are temperature dependent.765
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Figure 3


