131 research outputs found

    Evidence of early bottom water current flow after the Messinian Salinity Crisis in the Gulf of Cadiz

    Get PDF
    Highlights • Stratigraphic framework over the Miocene-Pliocene boundary at IODP Site U1387. • Abrupt sedimentary changes over the Miocene-Pliocene boundary. • Clear hints for onset of Mediterranean Outflow after the Messinian Salinity Crisis. • Evidence of bottom water currents in contouritic sedimentation and elevated Zr/Al. • Quiet, hemipelagic sediment deposition during the Messinian in the Gulf of Cadiz. Abstract Integrated Ocean Drilling Program (IODP) Expedition 339 cored multiple sites in the Gulf of Cadiz in order to study contourite deposition resulting from Mediterranean Outflow water (MOW). One hole, U1387C, was cored to a depth of 865.6 meters below seafloor (mbsf) with the goal of recovering the Latest Miocene to Pliocene transition in order to evaluate the history of MOW immediately after the end of the Messinian Salinity Crisis. To understand this history, an accurate age model for the succession is needed, but is challenging to construct, because the Miocene-Pliocene boundary is not marked by a clear biostratigraphic event in the Atlantic and coring gaps occur within the recovered stratigraphic record. These limitations are overcome by combining a variety of chronostratigraphic datasets to construct an age-model that fits the currently available age indicators and demonstrates that coring in Hole U1387C did indeed recover the Miocene-Pliocene boundary at around 826 mbsf. This boundary is associated with a distinct and abrupt change in depositional environment. During the latest Messinian, hemipelagic sediments exhibiting precession-induced climate variability were deposited. These are overlain by Pliocene sediments deposited at a much higher sedimentation rate, with much higher and more variable XRF-scanning Zr/Al ratios than the underlying sediment, and that show evidence of winnowing, particle sorting and increasing grain size, which we interpret to be related to the increasing flow of MOW. Pliocene sedimentary cyclicity is clearly visible in both the benthic δ18O record and the Zr/Al data and is probably also precessionally controlled. Two contouritic bigradational sandy-beds are revealed above the third sedimentary cycle of the Pliocene. On the basis of these results, we conclude that sedimentation associated with weak Mediterranean-Atlantic exchange, began in the Gulf of Cadiz virtually at or shortly after the Miocene-Pliocene boundary

    Temperature calibration of Mg/Ca ratios in the intermediate water benthic foraminifer Hyalinea balthica

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q04003, doi:10.1029/2010GC003333.Core top samples from Indonesian and northeast Atlantic depth transects were used to calibrate Mg/Ca and δ18O in tests of the calcitic benthic foraminifer Hyalinea balthica to bottom water temperature between 4°C and 13°C. This shallow infaunal species is primarily abundant in neritic to upper bathyal sediments (<600 m). Both linear and exponential calibrations suggest a temperature sensitivity of ~12% per °C that is ~4 times higher than observed in other species of deep-sea benthic foraminifera. Culture experiments support the core top calibration. We find no discernible effect of salinity and saturation on Mg/Ca. Comparison between the measured benthic foraminiferal δ18O and predicted equilibrium values suggests that on average H. balthica δ18O is 0.64‰ ± 0.13‰ lower than predicted from the equilibrium composition. To test the reliability of using paired H. balthica Mg/Ca and δ18O measurements for reconstructing seawater δ18Osw and salinity, we apply this calibration to another depth transect from Cape Ghir off NW Africa, which was not included in the calibration. Based on error analysis of the calibration data and this validation test, we show that the uncertainty of reconstructing bottom water temperature and salinity from paired Mg/Ca and δ18O measurements of H. balthica is better than ±0.7°C and ±0.69 practical salinity scale, respectively. The small uncertainties allow for the reconstruction of seawater density to better than 0.3σθ units, which is precise enough for the identification of specific water masses and reconstruction of changes in their properties. We propose that the relatively high Mg content and temperature sensitivity of H. balthica might be due to minor, biologically mediated contribution of high-Mg calcite to the primarily low Mg calcite test, which is influenced by the ambient temperature. This hypothesis, if correct, suggests that benthic species with relatively high Mg/Ca may be better suited for deepwater temperature reconstructions than species that have thus far been more commonly used.This project was funded by NSF Awards OCE 02‐20922 and 09‐02977 to YR, OCE 09‐28607 to MK, OCE02‐20776 to DWO, and DFG priority program INTERDYNAMIK to AM

    Fast rates of subduction erosion along the Costa Rica Pacific margin: implications for non-steady rates of crustal recycling at subduction zones

    Get PDF
    At least since the middle Miocene (∼16 Ma), subduction erosion has been the dominant process controlling the tectonic evolution of the Pacific margin of Costa Rica. Ocean Drilling Program Site 1042 recovered 16.5 Ma nearshore sediment at ∼3.9 km depth, ∼7 km landward of the trench axis. The overlying Miocene to Quaternary sediment contains benthic foraminifera documenting margin subsidence from upper bathyal (∼200 m) to abyssal (∼2000 m) depth. The rate of subsidence was low during the early to middle Miocene but increased sharply in the late Miocene-early Pliocene (5–6.5 Ma) and at the Pliocene-Pleistocene boundary (2.4 Ma). Foraminifera data, bedding dip, and the geometry of slope sediment indicate that tilting of the forearc occurred coincident with the onset of rapid late Miocene subsidence. Seismic images show that normal faulting is widespread across the continental slope; however, extension by faulting only accounts for a minor amount of the post-6.5 Ma subsidence. Basal tectonic erosion is invoked to explain the subsidence. The short-term rate of removal of rock from the forearc is about 107–123 km3 Myr−1 km−1. Mass removal is a nonsteady state process affecting the chemical balance of the arc: the ocean sediment input, with the short-term erosion rate, is a factor of 10 smaller than the eroded mass input. The low 10Be concentration in the volcanic arc of Costa Rica could be explained by dilution with eroded material. The late Miocene onset of rapid subsidence is coeval with the arrival of the Cocos Ridge at the subduction zone. The underthrusting of thick and thermally younger ocean crust decreased the subduction angle of the slab along a large segment of the margin and changed the dynamic equilibrium of the margin taper. This process may have induced the increase in the rate of subduction erosion and thus the recycling of crustal material to the mantle

    The prevalence of burnout among psychologists and psychological associates in the state of Texas

    No full text
    This study investigates the prevalence of burnout among a sample of Texas psychologists and psychological associates as well as differences between the three categories of practitioners within that group (Licensed Psychology Health Care Providers (LPHCP), Licensed Psychologists - Certified Psychologists (LP-CP), Psychological Associates (PA)). The Maslach Burnout Inventory and a questionnaire seeking demographic information was used in this cross-sectional survey. Sample size was 654. A stratified proportionate random sample of Texas Psychologists was drawn. The response rate based on usable returns was 55% (n = 359). General demographic characteristics were determined mainly by frequency distributions. For comparing means of samples, t and multiple range tests were used. A series of one-way and two-way analysis of variance procedures were used to compare subgroup differences in burnout. The universe was representative for the sample and for the three categories of psychologists. Urban subjects were more likely to respond, as were male PAs. Practitioners were as likely male as female, working in an urban area, in their present job eight years, and in the occupation for fifteen. The LPHCP group were older, had been in psychology and at their present job longer, and were more likely to belong to both state and local professional organizations than the other two groups. Males outnumbered females in this group and in LP-CPs. This gender trend was reversed for PAs. Of the total sample, 76% reported high job satisfaction and 77% had high levels of perceived job autonomy. There was no significant difference between the study sample and the mental health norms in emotional exhaustion (EE). Our sample had significantly less feelings of depersonalization (DP) and higher feelings of personal accomplishment (PA). Psychological Associates felt significantly less personal accomplishment than the other groups. Predictors for the total sample indicated younger practitioners and those with low job satisfaction had significantly higher burnout, as did males when compared to their female cohorts. Some types of jobs were more likely to contribute to burnout than others. Membership in their local area professional organization lessened the chances for burnout significantly. Predictors for categories of psychologists indicated that males in the LPHCP and LP-CP groups were at higher risk than females. Further, for LP-CPs low job satisfaction and job autonomy, as well as job sites, were significant. Those in this group who worked as school psychologists were at the highest risk for burnout. Job dissatisfaction was the major predictor of burnout for psychological associates. Practitioners working in state or government agencies, school systems and administrative jobs generally had higher burnout than those on a university faculty or in private practice. (Abstract shortened by UMI.
    corecore