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Abstract 

Integrated Ocean Drilling Program (IODP) Expedition 339 cored multiple sites in the Gulf 

of Cadiz in order to study contourite deposition resulting from Mediterranean Outflow 

water (MOW). One hole, U1387C, was cored to a depth of 865.6 meters below seafloor 

(mbsf) with the goal of recovering the Latest Miocene to Pliocene transition in order to 

evaluate the history of MOW immediately after the end of the Messinian Salinity Crisis. To 

understand this history, an accurate age model for the succession is needed, but is 

challenging to construct, because the Miocene-Pliocene boundary is not marked by a clear 

biostratigraphic event in the Atlantic and coring gaps occur within the recovered 

stratigraphic record. These limitations are overcome by combining a variety of 

chronostratigraphic datasets to construct an age-model that fits the currently available age 

indicators and demonstrates that coring in Hole U1387C did indeed recover the Miocene-

Pliocene boundary at around 826 mbsf. This boundary is associated with a distinct and 

abrupt change in depositional environment. During the latest Messinian, hemipelagic 

sediments exhibiting precession-induced climate variability were deposited. These are 

overlain by Pliocene sediments deposited at a much higher sedimentation rate, with much 

higher and more variable XRF-scanning Zr/Al ratios than the underlying sediment, and that 

show evidence of winnowing, particle sorting and increasing grain size, which we interpret 

to be related to the increasing flow of MOW. Pliocene sedimentary cyclicity is clearly 

visible in both the benthic δ
18

O record and the Zr/Al data and is probably also 

precessionally controlled. Two contouritic bigradational sandy-beds are revealed above the 

third sedimentary cycle of the Pliocene. On the basis of these results, we conclude that 

sedimentation associated with weak Mediterranean-Atlantic exchange, began in the Gulf of 

Cadiz virtually at or shortly after the Miocene-Pliocene boundary. 
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1. Introduction 

Today, Mediterranean Outflow water (MOW) is the dominant intermediate water mass in 

the Gulf of Cadiz (Hernández-Molina et al., 2014a). The mixture of relatively warm and 

saline Mediterranean water and colder, less saline Eastern North Atlantic Central Water 

(ENACW) proceeds north and north-westwards along the middle slope of the Algarve 

Margin (Fig. 1; Hernández-Molina et al., 2003a) and preconditions Atlantic Meridional 

Overturning Circulation, hence also influencing global climate (Ivanovic et al., 2014; 

Rogerson et al., 2012a).  

The present day gateway configuration through the Gibraltar Strait dates back to the 

astronomically dated Miocene-Pliocene boundary (5.332 Ma; e.g. Lourens et al., 1996; Van 

Couvering et al., 2000; Blanc, 2002; Duggen et al., 2003; Roveri et al., 2014). Before this, 

Atlantic-Mediterranean seawater exchange took place through two marine connections, the 

Betic Corridor in southern Spain and the Rifian Corridor in north west Morocco (e.g. 

Benson et al., 1991; Santisteban and Taberner, 1983). Exchange became progressively 

restricted during the Late Miocene as a result of a complex combination of tectonic and 

relative sea-level processes until the two water bodies became almost completely 

disconnected (Krijgsman et al., 1999; Kuroda et al., 2016; Lofi et al., 2005; Meijer and 

Krijgsman, 2005; Ohneiser et al., 2015; Simon and Meijer, 2015). Between 5.97 and 5.33 

Ma, the chemical composition and salinity of Mediterranean water must have changed 

dramatically and thick evaporites precipitated during an extraordinary event known as the 

Messinian Salinity Crisis (MSC; e.g. Hsu et al., 1973). Immediately after the Messinian, it 

is thought that physically the Mediterranean and the Atlantic were reconnected through the 
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single gateway. However, the nature of the initial early Pliocene Atlantic-Mediterranean 

water mass exchange is still unclear (Hernández-Molina et al., 2014a). 

Analyses of benthic foraminifera assemblages indicate that water from the Atlantic Ocean 

penetrated the Eastern Mediterranean within a few precession cycles of the Miocene-

Pliocene boundary (Iaccarino et al., 1999a). This, combined with the transition back to 

normal marine salinities in the Mediterranean, suggests that exchange between the two 

water bodies took place through the gateway immediately after the Miocene-Pliocene 

boundary. Seismic reflection profiles, however, are interpreted to indicate that contourites 

associated with the earliest active bottom water current along the pathway of the present 

day MOW were deposited significantly later at 4.2-4.5 Ma (Expedition 339 Scientists, 

2013a, 2012; Hernández-Molina et al., 2014b). The question is whether any record of early 

Pliocene MOW prior to 4.2-4.5 Ma can be identified. Possible reasons for the absence of a 

clear early Pliocene record of MOW include the lack of appropriately located, well-dated 

sedimentary archives or that the MOW and NACW are too similar to distinguish from each 

other (Rogerson et al., 2012b).  

Integrated Ocean Drilling Program (IODP) Expedition 339 cored Hole U1387C (Fig. 1) in 

order to recover the first Late Miocene-Pliocene sediment record in the Gulf of Cadiz and 

to evaluate the re-establishment of Mediterranean-Atlantic exchange after the MSC (Stow 

et al., 2011).  Unfortunately, the Miocene-Pliocene boundary is not easy to identify in the 

Gulf of Cadiz, since its global stratotype has been established in the Mediterranean where it 

is associated with the facies shift from Messinian evaporites to Zanclean marls (Van 

Couvering et al., 2000). Consequently, the Miocene-Pliocene boundary outside the 

Mediterranean Basin can only be identified using alternative chronostratigraphic methods.  
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Analyses to detect bottom water currents, for example of Mediterranean-Atlantic exchange, 

are increasingly done by analysing XRF-core scanning Zr/Al levels in combination with 

grain size analysis (Bahr et al., 2015; Kaboth et al., 2015; Lamy et al., 2015; Voelker et al., 

2015b). In cases where Zr is associated with coarser grain sizes in marine environments, 

such as in the Gulf of Cadiz, it becomes a typical indicator for sediments affected by 

changes in bottom water current strength (Bahr et al., 2014; Bertrand et al., 2012; 

Ganeshram et al., 1999). The element Zr is most often associated with the dense refractory 

mineral zircon (e.g. McLennan et al., 1993). Zr/Al peaks are associated with higher 

proportions of non-aluminosilicate minerals, such as quartz, feldspars, and heavy minerals 

(zircon). Lower Zr/Al ratios are linked to finer grained Al-rich minerals, such as clays. 

Bottom water current sorting promotes the separation between coarser siliciclastic sediment 

components, enrich in Zr, and Al-rich finer grained minerals. For example, Bahr et al. 

(2014) showed that Latest Pleistocene (0-140 ka) contourites at Site U1387 exhibited high 

Zr/Al ratios in sandy intervals, which were deposited under high bottom water current flow 

conditions. By contrast, Zr/Al levels in the hemipelagic core MD01-2444 (Fig. 1) are 

dominated by long-term variability and shows only small-scale oscillations. 

In this study, we establish a refined chronostratigraphic framework for upper Miocene to 

lower Pliocene sediments recovered at IODP Site U1387 based on seismic correlation, 

biostratigraphic constrains (planktic foraminifera, calcareous nannofossils), 

magnetostratigraphy and cyclostratigraphy. We then evaluate the imprint of bottom water 

currents on the Gulf of Cadiz sediments spanning the Miocene-Pliocene transition using 

lithology, grain size fractions (>63 μm) and elemental XRF Zr/Al ratios. Our key aim is to 
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identify deposits characteristic for elevated bottom water currents, to evaluate current 

strength, and if possible to date the onset of post MSC MOW. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

8 
 

2. Background 

 IODP Site U1387 is located on the continental margin of the Iberian Peninsula at the 

eastern end of the Faro Drift (36ᵒ48´N, 7ᵒ43´W) at 559 m water depth (Fig. 1; Expedition 

339 Scientists, 2013a, 2012).This study focuses on the lowermost section of Hole U1387C 

from 731.2 mbsf to the bottom of the sediment sequence at 865.6 mbsf. These are the oldest 

sediments recovered during the IODP Expedition 339. Core recovery over this interval was 

64% and downhole logging data was not collected because of borehole wall collapse, which 

means that the record contains significant gaps. 

Using the Last Occurrence (LO) of Globorotalia margaritae (3.85 Ma; Hilgen et al., 2012) 

at 560.4 mbsf, the First Occurrence (FO) of Globorotalia puncticulata (4.52 Ma; Lourens 

et al., 2004) at 630.82 mbsf in combination with the presence of G. margaritae at the 

bottom of the core (younger than 6.35 Ma; Hilgen et al., 2012; Table 1) and the absence of 

Globorotalia miotumida, shipboard scientists suggested that sediments from 731.2-865.6 

mbsf were Miocene/Pliocene in age (Expedition 339 Scientists, 2012; Stow et al., 2013a; 

Hernández-Molina et al., 2014). However, there is no robust justification of the depth for 

the Miocene-Pliocene boundary due to limited tie point identifications during the 

Expedition (Expedition 339 Scientists, 2013a, 2012). Although the exact depth of the 

boundary is never clearly stated in any of these publications, it is apparent from the various 

stratigraphic summary figures that so far the boundary was poorly constrained. The 

preferred depth of ~730 mbsf used in the summary by Hernández-Molina et al. (2014a) 

centered on IODP Expedition 339 results was based on a lithologic transition from 

hemipelagites of presumed Miocene age to turbidites and debrites of presumed Pliocene 
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age. However, the ~730 mbsf estimate was clearly not a precise depth for the Miocene-

Pliocene boundary.  

Recently, 3D and 2D seismic reflection profiles have been used to correlate the Algarve-2 

well to IODP Site U1387 (Figure 1, Hernández-Molina et al., 2015). The Miocene-Pliocene 

boundary in Algarve-2 has been identified at 1455-1460 mbsf using a combination of 

biostratigraphic data and cyclostratigraphic tuning of resistivity logs (Hernández-Molina et 

al., 2015). The Miocene-Pliocene boundary is manifested as an increase in reflection 

amplitudes on seismic lines (M-reflector) truncating towards the basin margins. This 

reflector was correlated by Hernández-Molina et al., (2015) to an abrupt sedimentary 

change in Site U1387 at ~826 mbsf with an uncertainty of 15-20 m. 

Core descriptions prepared during IODP Expedition 339 describe the lithology between 

731.2-751 mbsf as greenish grey to very dark greenish grey nannofossil (silty) mud or sand 

with biogenic carbonate (Fig. 2A; Expedition 339 Scientists, 2013). Shipboard colour 

reflectance data (L*) mirrors to some extent darker and lighter colours of the sediments 

(Fig. 2G). Cemented grey medium sandstone with biogenic carbonate is found between 

750.39 and 750.92 mbsf (Fig. 2B). From 760 mbsf to the base of the core, dark greenish 

grey nannofossil mud and muddy/clayey nannofossil ooze is found commonly interbedded 

with 2 cm thick beds of dark greenish grey silty sand (Fig. 2D). The deepest occurrence of 

a thick (~80 cm) silty bed is observed at about 801 mbsf (Fig. 2C). Distinct bioturbation is 

present from 827.2 to 865.2 mbsf (Fig. 2E), but is less extensive higher up the sequence. 

Hence, compositional lithological changes exist at several depths in the studied section. 

While the Miocene-Pliocene boundary was previously presumed to be associated with the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

10 
 

significant change in lithology at ~730 mbsf (Hernández-Molina et al., 2014b), it was just 

as likely represented by one of the other notable changes in lithology.  

Finally, shallow water benthic foraminifera, such as Ammonia, Elphidium and 

Asterigerinata were recorded from 792.8 mbsf upwards and have particular high 

abundances above 765.72 mbsf (Expedition 339 Scientists, 2013a).  

3. Methods 

3.1 Sample preparation 

Bulk sediment samples from IODP Hole U1387 of ~25 cm
3
 were collected at the IODP 

Bremen Core Repository for micropaleontological, stable isotope, and grain size analyses. 

Samples were taken every 40 cm from 731 to 748 mbsf and every 20 cm from 750 to 866 

mbsf. All samples were freeze-dried overnight, weighed, disaggregated in tap water 

overnight, sieved through >63 and >150 μm sieves, dried, and weighed again. The >63 μm 

fraction of the total dry weight was used as the sand fraction, indicative of bottom water 

currents flow strength (Rogerson et al., 2005).  

Paleomagnetic samples consisted of the archive halves of all core sections and oriented 

discrete sediment samples, which were collected by inserting a hollow extruder into the 

middle of the working half of the split-core sections and then extruding the sediments into 

plastic cubes (2 cm × 2 cm × 2 cm, with an internal volume of ~7 cm
3
) as described in 

Expedition 339 Scientists, (2013b). 

3.2 Micropaleontological studies 

Planktic foraminifera biostratigraphic analyses was performed on the >150 μm fraction of 

the prepared samples. A microsplitter was used to split residues until about 150 planktic 
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specimens remained. All planktic foraminifera species were counted and classified 

including the biostratigraphic marker species G. margaritae, Globorotalia menardii and 

sinistral or dextral coiling Neogloboquadrina acostaensis. Presence/absence data of benthic 

foraminiferal species on the >150 μm fraction were used to provide a rough 

paleobathymetry estimation [A detailed quantitative analysis will be available in a separate 

publication by García-Gallardo et al., in preparation]. Five samples were chosen for 

detailed calcareous nannofossils biostratigraphic analysis, implementing the settling 

technique described in Flores and Sierro (1997).  

3.3 Stable isotope analyses 

Between two and fifteen specimens of the benthic foraminifera Cibicidoides pachyderma 

>250 μm were hand-picked from each sample for carbon and oxygen isotope analysis 

(δ
13

C, δ
18

O). Specimens were washed with ethanol, ultrasonicated for several seconds and 

dried for 24 hours to remove all liquids.  

Samples from 866 to 827 mbsf and 731 to 748 mbsf were analysed in the Godwin 

Laboratory for Palaeoclimate Research at the University of Cambridge. Isotope analyses 

were performed using a Thermo Finnigan MAT253 mass spectrometer fitted with a Kiel 

device. Analytical precision on an in-house standard, calibrated against international 

carbonate standard NBS-19, is estimated to be ±0.06 ‰ for 
13

C and ±0.08 ‰ for 
18

O. 

Results are reported relative to V-PDB. Samples from 748 mbsf to 827 mbsf were analysed 

in the Leibniz-Laboratory for Radiometric Dating and Isotope Research at the Christian-

Albrechts-University in Kiel with a MAT 253 mass spectrometer connected to a Kiel IV 

carbonate preparation device. The analytical precision of the NBS-19 international standard 

and three laboratory-internal standards was better than ±0.05 ‰ (δ
13

C) and ± 0.08 ‰ 
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(δ
18

O). Large foraminiferal samples with more than six individuals were crushed to 

homogenise the samples before analysis of a representative subsample was undertaken. 

3.4 X-ray fluorescence analyses 

We used the XRF core scanner II, (AVAATECH Serial No. 2) at the MARUM—

University of Bremen to retrieve elemental Zr/Al ratios. XRF core scanner data were 

collected every 3 cm down-core over a 1.2 cm
2
 area with a down-core slit size of 10 mm in 

three separate runs using generator settings of 10, 30, and 50 kV, and currents of 0.2, 1.0, 

and 1.0 mA, respectively. Sampling time was set to 20 s and scanning took place directly at 

the split core surface of the archive half. The split core surface was covered with a 4 m 

thin SPEXCerti Prep Ultralene1 foil to avoid contamination of the XRF measurement unit 

and desiccation of the sediment. The reported data have been acquired by a Canberra X-

PIPS Silicon Drift Detector (SDD; Model SXD 15C-150-500) with 150 eV X-ray 

resolution and the Canberra Digital Spectrum Analyzer DAS 1000. The XRF II scanner is 

equipped with an Oxford Instruments 50W XTF5011. Core disturbance from drilling 

(biscuiting) may have significantly degraded the quality of XRF-measurements from 

760.18 to 764.94 (Core 51R) and inhibited measurements from 816.58 to 827.23 mbsf 

(Core 57R). 

3.5 Magnetostratigraphy 

As described in Expedition 339 Scientists (2013a, b), continuous paleomagnetic 

measurements were made every 5 cm along the split-core sections during Expedition 339 

using the shipboard cryogenic magnetometer (2G Enterprises Model-760R). The natural 

remanent magnetization (NRM) was measured after progressive alternating field (AF) 

demagnetization at 0, 10, and 20 mT. The split-core data were further cleaned by removing 
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results from disturbed intervals and from near the ends of the core sections, as these data 

contain biases. The cleaned data are available in Table T16 of Expedition 339 Scientists 

(2013a) and the raw data are available online from the IODP LIMS Database.  

To permit more detail demagnetization experiments and to better assess the characteristic 

remanent magnetization (ChRM) directions, we also collected approximately one discrete 

paleomagnetic cube sample (7 cm
3
) from each core section (roughly one sample every 1.5 

m) during Expedition 339 for the interval from 700 mbsf to the base of the hole, for a total 

of 56 samples. Only four of these samples were measured during Expedition 339. The 

remaining 52 were measured post-cruise in the Paleomagnetism Laboratory at University of 

California-Davis. All 56 samples were subjected to progressive AF demagnetization 

generally using 5 mT steps from 0 to 40 mT and 10 mT steps up to 100 mT. Paleomagnetic 

directions were determined from principal component analysis (PCA) (Kirschvink, 1980) 

using ZPLOTIT software (Acton, 2011, http://paleomag.ucdavis.edu/software-zplotit.html). 

The remanence measurements from at least five demagnetization steps for each interval 

were fit to lines using only steps between 20 and 60 mT. PCA lines were fit using both the 

FREE option, in which the line is not required to pass through the origin of the plot, and the 

ANCHORED option, in which line is anchored to the origin (Supplementary Tables S17-

S19). A Fisherian mean direction was also computed from the highest several 

demagnetization steps to estimate a stable end point (SEP). The paleomagnetic data and 

PCA results are provided in the Supplementary Material.  

For each sample, we determined a preferred inclination from the PCA FREE, PCA 

ANCHORED, or SEP estimate of the ChRM. The selection of which method best resolved 

the ChRM was based on visual inspection of the sample directions plotted on orthogonal 
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vector diagrams (modified Zijderveld plots) and stereonets. The results for each sample 

were ranked with a quality factor, where Quality 1 was reserved for samples that displayed 

very linear decay of magnetization during demagnetization as noted by PCA maximum 

angular deviation (MAD) angles < 5. Quality 2 are similar to Quality 1 but the MAD angles 

are between 5° and 10°. These highest quality (1 and 2) samples have very well resolved 

ChRM directions and the polarity can be determined with great confidence. Such high 

quality samples occur mainly in the upper part of section, and none are deeper than 550 

mbsf. Quality 3 samples displayed moderate directional scatter during AF demagnetization 

but a relatively noisy ChRM can be determined from which the polarity can be established. 

Quality 4 samples have large directional scatter during AF demagnetization and generally a 

significant drilling overprint that overlaps much of the coercivity spectra of the ChRM. The 

ChRM cannot be accurately determined although it is often possible to determine the 

polarity of these samples because they trend toward positive (normal polarity) or negative 

(reverse polarity) inclinations as they are demagnetized above about 40-80 mT. Quality 5 

samples have such highly variable directions during AF demagnetization or are so strongly 

overprinted that their polarity is indeterminate.  Of the 56 samples below 700 mbsf, only 3 

are Quality 3, 33 are Quality 4, and the remaining 20 are Quality 5. 

4. Results 

The sedimentary sequence was divided into three intervals based on its lithological and 

geochemical properties (Fig. 3): Interval I (826 to 865.6 mbsf) is characterised by low 

Zr/Al levels and consistently low weight % sand; Interval II (826 to 760 mbsf) has higher, 

more variable Zr/Al ratios and progressively higher and more variable grain size; Interval 

III (731.2 to 760 mbsf) is characterised by highly variable Zr/Al oscillations and much 

higher weight % sand commonly reaching 10-40 weight %. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

15 
 

4.1 Sand fraction and composition 

The sand fraction >63 μm of Interval I is consistently less than 3 weight % (Fig. 3). 

Microscopic inspection of washed samples revealed that this coarser fraction mainly 

consists of planktic foraminifera with minor lithic particles including pyrite and rare quartz. 

A similar grain size and composition is observed in the lower part of Interval II (Cores 56R 

and 57R), but samples with distinctly higher contents of >63 m fraction occur increasingly 

commonly above 803 mbsf. The coarser grain size is associated with an increase in the 

quartz content. Sediments in Cores 53R and 54R show distinct bigradational grain size 

patterns with traces of bioturbation (Fig. 2D, 4). The sand fraction of these silt horizons is 

dominated by fine sand-grade material (e.g. between 63 and 150 μm; Fig. 4). The 

composition of the >150 μm fraction is mainly restricted to foraminifera and peaks in the 

abundance of this coarser size fraction show no relationship with the bigradational pattern 

seen in the fine-sand material (Fig. 4). The higher sand content seen in Interval III is 

associated with more lithic particles, mainly quartz grains (Fig. 3). 

4.2 Stable isotope records 

The benthic δ
18

O isotope record shows regular fluctuations throughout the studied section. 

However, the different intervals are characterised by variations with different wavelengths 

and amplitudes (Fig. 3). The δ
18

O oscillations in Interval I have an average wavelength of 

~2.2 m, considering an additional fourth alternation in Core 61R that is only visible in the 

δ
13

C during the larger δ
18

O oscillation from 856.68 to 860.48 mbsf (Table 2; Fig. 3, 9). [A 

detailed interpretation of the δ
13

C record is beyond the scope of this paper and is the subject 

of a forthcoming paper (Van der Schee et al. in preparation)]. The regular δ
18

O alternations 

in Interval II typically have significantly longer wavelengths of ~6 m on average. Limited 

recovery of Interval III makes the wavelength of its δ
18

O alternations more difficult to 
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calculate, but it appears to be comparable to those of Interval II. The average δ
18

O in 

Interval III is lower than in Intervals I and II (Fig. 3). In all three intervals, distinctly darker 

layers tend to be associated with higher δ
18

O (Fig. 3).  

4.3 XRF-scanning Zr/Al ratios 

Zr/Al ratios in Interval I have consistently low ratios with the lack of obvious cycles that 

resemble the periodicity of those well developed in the δ
18

O for this interval (Fig. 3A, B). 

By contrast, Intervals II and III are characterized by distinct, high amplitude variability in 

the Zr/Al levels displaying cycles with wavelengths similar to those of the benthic isotope 

record (~6 m). In general, the two records show negative co-variation (Fig. 3). 

4.4 Paleobathymetry estimations from benthic foraminiferal presence/absence data. 

Presence/absence data of benthic foraminifera are given in the Supplementary material. The 

studied samples frequently contain benthic foraminifers known to have their upper limit of 

bathymetric distribution at upper to middle bathyal water depths (e.g., Cibicidoides 

pachyderma, Cibicidoides . wuellerstorfi, Laticarinina pauperata, Eggerella bradyi, 

Epistominella exigua, Fissurina spp., Gyroidinoides spp., Melonis spp., Oolina spp., 

Osangularia culter, Pullenia spp., Saracenaria spp., Vulvulina pennatula; (Jones, 1994; 

Leckie and Olson, 2003; Van Morkhoven et al., 1986). Furthermore, the assemblages 

contain many taxa that characterize slope environments between 300 and 900m water depth 

in the Gulf of Cadiz and the western Iberian Margin (e.g., Amphicoryna scalaris, 

Bigenerina nodosaria, Bulimina striata, Cibicidoides mundulus, Globocassidulina 

subglobosa, Planulina ariminensis, Uvigerina mediterranea, and U. peregrina; (Phipps et 

al., 2012; Schönfeld, 2002, 1997). A particularly interesting species amongst the bathyal 

taxa is Laticarinina pauperata, a cosmopolitan species that tolerates a wide range of 
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environmental conditions at bathyal and abyssal water depths (van Morkhoven et al., 1986). 

While other taxa limited to bathyal water depths occur in Interval I as well as Interval II 

and III, this species disappears from the record above 826 mbsf. An upper depth limit at the 

middle/upper bathyal transition has been suggested for L. pauperata, and its disappearance 

may indicate a slight shallowing from middle to upper bathyal water depths comparable to 

today (van Morkhoven et al., 1986). 

Foraminiferal species restricted to neritic environments such as Ammonia spp., 

Asterigerinata spp., Cancris spp., and Elphidium spp. are increasingly present above 801 

mbsf  (Leckie and Olson, 2003; Mendes et al., 2012). These taxa occur throughout the 

record alongside bathyal species mentioned above and are thus considered allochthonous. 

5. Chronostratigraphic framework  

5.1. Bio- and magnetostratigraphy  

5.1.1 Planktic foraminifera 

Several planktic foraminiferal species provide constraints on the age of the basal part of 

IODP Hole U1387 (Table 1). These include: 

1. The first occurrence of Globorotalia puncticulata (4.52 Ma; Hilgen et al 2012) which 

has been identified in IODP Hole U1387C at a depth of 630.82 mbsf (Expedition 339 

Scientists, 2013a). The interval of interest (731.2 - 865.6 mbsf) is therefore entirely 

older than 4.52 Ma.  

2. Neogloboquadrina acostaensis which is abundant in late Messinian to early Pliocene 

sediments from this region and exhibits well-dated changes in predominant coiling 

direction (Krijgsman et al., 2004; Sierro et al., 2001; Lourens et al., 2004). Typically, 

assemblages strongly dominated by sinistral coiling N. acostaensis are found in 
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sediments older than 6.37 Ma, while dextral coiling shells constitute the vast majority 

of specimens in sediments younger than 5.82 Ma (Hilgen and Krijgsman, 1999; 

Krijgsman et al., 2004; Sierro et al., 2001). Quantitative assessment of the coiling 

direction of Neogloboquadrina acostaensis in the lower part of IODP U1387 shows 

that it is strongly dominated by dextral coiling forms (Fig. 5).  Consequently the base 

of the hole is most likely younger than 5.82 Ma.  

Two dextral to sinistral coiling shifts are found from 808.22 to 809.52 and at 841.8 

mbsf (Fig. 5). In the Mediterranean Basin during the Pliocene, two sinistral influxes are 

reported and astronomically tuned in the Eraclea Minoa section as 5.30 and 5.32 Ma 

(Lourens et al., 1996). Equivalent influxes to these are described in precession driven 

Cycle 2 and 3 immediately above the Miocene-Pliocene boundary in ODP holes 974B 

and 975B (Iaccarino et al., 1999b). 

3. A distinct high abundance interval, referred to as “acme”, of Globorotalia 

margaritae has been described from several latest Miocene records from the Gulf of 

Cadiz, SW Spain and NW Morocco (Van de Berg et al., 2015; Krijgsman et al., 

2004; Ledesma, 2000; Sierro et al., 1993, 1982). The “acme” has an abundance of 

G. margaritae that exceeds at least 10% of the total planktic foraminifera 

assemblage (Krijgsman et al., 2004; Ledesma, 2000; Sierro et al., 1993, 1982). An 

interval of particular high abundance occurs in the Ain el Beida section (> 20 %; 

NW Morocco; Krijgsman et al., 2004) and the Montemayor core (> 37%; SW 

Spain; Van den Berg et al., 2015) between respectively, ~5.75-~5.70 Ma and ~5.84 

Ma (both sites) where the “acme” coincides with glacial stages TG20 and TG22 

(Krijgsman et al., 2004). Foraminiferal counts from the lower part of IODP Hole 

U1387C show that only one sample contains >10% G. margaritae (805.42 mbsf; 
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Fig. 5), indicating that this sedimentary succession does not overlap the very high 

abundance “acme” identified at ~5.75-~5.70 to ~5.84 Ma. The relative large time-

span of the “acme” seems to be too long to coincide within a coring gap (see section 

5.2.2). In addition, it is unlikely that the “acme” would not be present even though 

the sediments of this time-interval might have been covered, since it has always 

been found in Gulf of Cadiz sections.  Since the coiling direction of N. acostoensis 

indicates that these sediments are most likely younger than 5.82, the G. margaritae 

data further constrains the age of the sediments to being younger than ~5.70-~5.75 

Ma. Outside the very high abundance interval, Krijgsman et al. (2004) included all 

samples with >5 % G. margaritae in the wider “acme” interval that spans 5.84 to 

5.56 Ma. As our quantitative G. margaritae data typically varies between 2 and 10 

% (Fig. 5; Supplementary material), it is possible that these sediments at the base of 

IODP Hole U1387C overlap, at least in part, with the described 5.84 to 5.56 Ma 

interval. 

4. An influx of G. menardii with a maximum abundance of 5.5 % is recorded between 

752.4 and 751.3 mbsf (Fig. 5; Supplementary material). Three similar influxes have 

been documented from the latest Messinian and earliest Pliocene in the Ain el Beida 

and Loulja sections in NW Morocco with astronomical ages of 5.550, 5.511 and 5.319 

Ma
1
. Without more robust age constraints the influx of G. menardii in IODP Site 

U1387 cannot be correlated to any of these. 

                                                           
1
 Please note that Krijgsman et al. (2004) incorrectly identify G. menardii pulses as Globorotalia miotumida. 

(Tulbure et al., in preparation), while they are referred to as G. menardii in van der Laan et al. (2006) (Van 
den Berg et al., 2015). 
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In summary, planktic biostratigraphic results suggest that the interval from 731.2 to 865.6 

mbsf is older than 4.52 Ma, the first occurrence of G. puncticulata (630.82 mbsf) and 

younger than the high abundance G. margaritae “acme” at 5.75 Ma.  

5.1.2 Calcareous nannofossils 

Characteristic markers species from the latest Neogene are common with individuals of 

Amaurolithus primus, Discoaster surculus, Discoaster pentaradiatus and Discoaster 

quinqueramus as well as characteristic reticulofernestrids (Reticulofenestra 

pseudoumbilicus, Reticulofenestra minuta, Reticulofenestra minutula and Reticulofenstra 

rotaria), allowing to place the studied interval between zones NN11 and NN15 spanning 

from 3.81 - 7.36 Ma (e.g. Young et al., 1994; Raffi et al., 2006). The presence of reworked 

specimens, mainly of Paleogene and early-middle Miocene age (e.g. Cyclicargolithus 

floridanus, Discoaster deflandei, Sphenolithus belemnos gr., among others) is common 

(Raffi et al., 2006). Expedition 339 Scientists, (2013a)  report the LO of D. quinqueramus 

at 811.43 mbsf that indicates an age younger than 5.54 Ma (Raffi et al., 2006). However, 

the LO of D. quinqueramus is hard to identify in such detail, because only a few specimens 

of D. quinqueramus are present and thus could easily be reworked. Also, a few specimens 

of R. rotaria are found in the studied interval which indicate an age range from 7.0-7.41 Ma 

(Flores et al., 2005; Raffi et al., 2006; Young et al., 1994). The planktic foraminiferal bio-

events are clearly indicating Upper Messinian and not upper Tortonian/lower Messinian as 

indicated by R. rotaria. If R. rotaria and planktic foraminifera were in-situ, specimens of 

Globorotalia miotumida and continuous abundances of Globorotalia menardii 5 were 

expected (Lourens et al., 2004). The incompatibility of the nannofossil and foraminifera 

data suggest that the few specimens of D. quinqueramus and R. rotaria are reworked.  
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5.1.3 Magnetostratigraphy 

The paleomagnetic data is generally of low quality because the sediment magnetizations are 

relatively weak and the magnetization of the cores includes a significant drilling overprint 

that masks the original depositional magnetization. The overprint has a steep downward 

direction (positive inclinations) similar to that expected for normal polarity intervals. 

Hence, failure to remove the drilling overprint with magnetic cleaning, such as AF 

demagnetization, can bias the magnetic polarity interpretation significantly. This is 

particularly the case for the split-core sections, which give virtually only positive 

inclinations even in intervals that must be reverse polarity. The 20-mT peak-field AF 

demagnetization used during Expedition 339 was clearly insufficient in removing the 

drilling overprint and resolving the original depositional magnetization, and thus no 

polarity could be determined from this data below 500 mbsf. 

The discrete samples were subjected to much higher peak-field AF demagnetization, which 

was successful at removing the drilling overprint from many of the samples from Hole 

U1387C.  Even though the quality of the samples is generally considered poor for resolving 

the ChRM fully, the polarity of the samples could be reasonably well estimated. This is 

illustrated in Figure 6 where the inclinations are shown for the interval from 550 mbsf to 

the base of the hole, along with the interpretation of the magnetozones.  

Most importantly for the present study is that the stratigraphic section below 800.65 mbsf is 

all reversely magnetized. Based on the biostratigraphic constraints, this magnetozone 

corresponds to Chron C3r (5.235-6.033 Ma; Lourens et al., 2004). The base of this 

magnetozone was not recovered, which is consistent with the biostratigraphic constraints 

that suggest the age of the bottom of the hole is <5.75 Ma. The overlying normal polarity 
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magnetozone spanning 743.99-800.65 mbsf corresponds to Chron C3n.4n (4.997-5.235 

Ma; Lourens et al., 2004), indicating the boundary between the magnetozones at 800.65 

mbsf has an age of 5.235 Ma. The Miocene-Pliocene boundary is thus below 800.65 mbsf 

and above the base of the Hole (865.6 mbsf). The sequence of magnetozones above 

Magnetozone C3n.4n fits well the general chron sequence of the geomagnetic polarity 

timescale and the depths and dates of the observed reversals agree well with 

biostratigraphic constraints and give sedimentation rates compatible with the other 

chronostratigraphic constraints (Fig. 7).  

5.2 Cyclostratigraphic constraints 

5.2.1 Precessionally forced variations 

Benthic δ
18

O records in open ocean deep marine settings during the Pliocene-Pleistocene 

are mainly dominated by obliquity. However, the first ~150 ky at the base of the Pliocene 

show a strong precessional signal in the LR04 stack (Fig. 8B; Lisiecki and Raymo, 2005). 

In contrast, rhythmic sedimentary cycles, including resistivity, gamma ray and Ti/Al 

records from the Iberian and Moroccan Atlantic margins during the Messinian and Early 

Pliocene typically display a pronounced variability in response to precession (e.g. Hodell et 

al., 1994; Krijgsman et al., 2004; Pérez-Asensio et al., 2014, 2013; van der Laan et al., 

2012, 2006, 2005; van den Berg et al., 2015). Precession continues to be dominant as 

astronomical forcing in all IODP sites drilled in the Gulf of Cadiz throughout the 

Pleistocene, including Site U1387 (Bahr et al., 2015; Lofi et al., 2015; Voelker et al., 

2015b). 

Precession and obliquity patterns are further investigated by comparing the δ
18

O from 

Loulja with obliquity and a combined record of normalized Precession and negative Tilt 
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(obliquity), hereafter Precession-Tilt (Fig. 8A, 8B). Obliquity is expressed in Precession-

Tilt by the enhancement of the amplitude of every other precession cycle. This distinct 

pattern is clearly visible in Loulja, for example around interglacial stage TG9 (5.45 Ma; 

Van der Laan et al., 2006). Here, the expression of TG9 is more pronounced due to 

increased influence of obliquity, while the precession cycles before and after TG9 have 

lower amplitudes.  

The discontinuous nature of the record in the studied interval of Hole U1387C makes it 

impossible to assess the cyclic patterns in the same way as can be achieved for continuous 

successions. However, in Interval I, a few continuous regular alternations are visible mainly 

in the δ
18

O. Benthic δ
18

O cyclical patterns in Cores 61R, 59R and 58R, show alternations of 

high and low amplitude oscillations (Fig. 9), that are very similar to the typical interference 

patterns of obliquity and precession. To illustrate this, we show a comparison of the benthic 

δ
18

O with a theoretical cyclic obliquity and precession pattern (Fig. 9). A similar, close 

relationship between the δ
18

O benthic record and the Precession-Tilt curve is seen as in the 

Loulja section for the upper Messinian (Fig. 8A, 8B).  

In even more detail, Core 61R reveals three full regular alternations in the δ
18

O-record, 

while the δ
13

C from the same foraminifera specimens shows four regular alternations (Fig. 

3, 9). Ventilation patterns and organic carbon storage normally explain δ
13

C variations. In 

the Gulf of Cadiz δ
13

C variations have been explained as an expression of ventilation 

patterns linked to MOW during the Pleistocene with a strong precessional component 

(Voelker et al., 2006, 2015b), however, linking our data with these patterns without a 

definite understanding of the connection between the Atlantic and Mediterranean is 

problematic. Independently, other well-dated benthic Messinian-Early Pliocene benthic-
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δ
13

C records in the area possess a precession component, i.e. Ain el Beida and Loulja (Van 

der Laan et al., 2012, 2006). Consequently, it is likely that the four δ
13

C regular alternations 

represent precession, while the long δ
18

O alternation from 856.9 to 860.3 is the expression 

of diminished precession under a strong influence of obliquity.  This suggests that the short 

scale visible regular alternations in the δ
18

O-record during Interval I are precession-induced 

cycles, with influence of other astronomical cyclicities.  

Regular alternations have larger wavelengths during Interval II and III, while coring gaps 

are still present. As a result, comparing cycle patterns as done for Interval I is impossible, 

because only one or two cycles can be recognized between gaps. We assume that the δ
18

O 

cyclic patterns are representing the same astronomical variations as in Interval I. 

Consequently, precessionally forced variability is assumed for the colour changes, Zr/Al 

ratios and, to some extent, grain size analyses that have wavelengths consistent with the 

benthic δ
18

O-record.  

5.2.2 Depositional time-span 

If the cycles in IODP Hole U1387C are precessionally controlled, the depositional time-

span can be calculated given that the average duration of a precession cycle is ~21.7 ka 

(Berger, 1984) and using the same sedimentation rate for intervals where no core was 

recovered as is measured in the cores below and above. No significant stretching or 

shortening of the sediment inside the core pipe during drilling is anticipated because the 

sediment throughout the Hole is well compacted.  

In Interval I, Cores 58R, 59R and 61R all show distinct colour and δ
18

O cycles with an 

average wavelength of 2.2 m per cycle (Table 2). Assuming this constant sedimentation 

rate, Interval I (38.68 m) should equate to ~18 precession cycles and a time-span of ~389 
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ky. The occurrence of two colour cycles and two carbon isotope excursions from 856.9 to 

860.3 suggest the presence of two precession cycles during the long δ
18

O cycle (Fig. 3, 9).  

In Interval II, the cores with more continuous recovery (Cores 57R to 54R) show an 

average thickness of 5.89 m per cycle (Table 2). Interval III appears too short to calculate 

an individual sedimentation rate in the same way, but it is clear that Core 48R has one long 

δ
18

O-variation with a width of 5.71 m, which is presumably representing nearly a full cycle. 

Uncertainty increases due to a possible additional, subtly expressed cycle in Core 48R, as is 

hinted in the Zr/Al oscillations. However, this still suggests that the sedimentation rate 

throughout Interval II and III remains relatively constant. Thus, the total thickness of 

Interval II and III (97.72 m) equates to ~16 precession cycles, with an average 

sedimentation rate of about 27.2 cm/ka and a total depositional time span of ~349 ky.  

5.3 Tentative working hypothesis on the age model for IODP U1387C 

While individually, none of these different datasets provide robust age constraints, more 

confidence can be gained if the stratigraphic interpretation is compatible with all of them. 

Here, we explore the best possible stratigraphic fit between the data available. 

Assuming, on the basis of the seismic correlation (Hernández-Molina et al., 2015), that the 

Miocene-Pliocene boundary occurs at the abrupt lithological change between Interval I and 

II (826 mbsf), the duration of the ~18 precession cycles (389 ky) in Interval I suggests that 

the age of the bottom of Hole U1387C is ~5.72 Ma (age indications at top of Fig. 3). This 

age is consistent with the absence of the G. margaritae “acme” which suggests that the 

bottom of the Hole must be younger than ~5.70-~5.75 Ma. The minimum timespan of the 

“acme” of at least 7 precession cycles makes it highly unlikely that the “acme” falls exactly 

in a coring gap. Within these age estimations, the two documented influxes of G. menardii 
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are likely to be in the coring gap, within unrecovered Core 60R (5.550 and 5.511 Ma; 

stratigraphic planktic foraminifera influxes and coiling changes are represented in Fig. 8B). 

The dextral to sinistral coiling change of N. acostaensis about 809 mbsf can be closely 

linked to the second reported sinistral shift at 5.30 Ma in the Mediterranean, three cycles 

above the Miocene-Pliocene boundary (Iaccarino et al., 1999b; Lourens et al., 1996).  

The depositional time span calculated on the basis of precessional cycles in Interval II and 

III (16 precession cycles; ~349 ky) suggests that, if the Miocene-Pliocene boundary is 

positioned right above Interval I, the age of the top of the studied interval is ~4.98 Ma. The 

precession-constrained sedimentation rates can also be used to estimate the age of the 

normal polarity interval from 743.99-800.65 mbsf. This suggests an age range for the 

normal polarity interval from ~5.04 to ~5.24 Ma. This  is in good agreement with the 

Thvera Subchron C3n.4n which has been astronomically dated at 4.997-5.235 Ma (Lourens 

et al., 2004). The influx of G. menardii between 752.4 and 751.3 mbsf, with its age 

estimation from this study of about 5.07 Ma, is thus younger than the influxes recorded in 

NW Morocco sections (5.319 Ma; van der Laan et al., 2006; Fig. 8B). Planktic foraminifera 

biostratigraphy from the equivalent section in Morocco (Loulja-B) has not been studied in 

detail and therefore the coiling changes in N. acostaensis and influx of G. menardii may 

have been overlooked so far. The well-recorded influx of G. menardii  at 5.319 Ma in 

Loulja (Van der Laan et al., 2006) is most likely lost in the coring gap just after the 

Miocene-Pliocene boundary (Fig. 8B).  

In summary, the stratigraphic interpretation which places the Miocene-Pliocene boundary 

at the sharp sedimentological shift at 826 mbsf, in accord with the seismic correlation 

(Hernández-Molina et al., 2015), and using the precession-forced, sedimentary cycles to 
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constrain the age above and below that point, provides an age model for the studied interval 

of Site IODP U1387. This age model is compatible with the available foraminiferal and 

paleomagnetic data, which results in an age-model with three tie-points: (1) an age of about 

5.7 Ma at the bottom of the hole, (2) the Miocene-Pliocene boundary (5.33 Ma) at 826 mbsf 

and (3) an age of about 5.0 Ma for the top of the studied interval. An uncertainty of two to 

three precessional cycles should be anticipated for the bottom and the top of the studied 

interval given the methods used to construct the age-model. 

6. Discussion 

Hemipelagic nannofossil muds showing significant bioturbation and containing few lithic 

coarser particles characterise the Messinian part (Interval I) of IODP Hole U1387C.  This, 

combined with the relatively low Zr/Al ratios, which show no clear correlation with the 

precessional benthic δ
18

O record, indicate low energy depositional environment influenced 

by orbital variation (Bahr et al., 2014). Similar cyclicity is found in NW Morocco and 

Southern Iberia, where clay-silt alternations result from orbitally-driven oscillations in 

detrital input (coast, riverine, or eolian; e.g.  Sierro et al., 2000; van der Laan et al., 2012, 

Van den Berg et al., 2015). Above the Miocene-Pliocene boundary (Interval II and III), 

sedimentation rates are about three times higher than in Interval I and the succession has 

higher Zr/Al values and sand content with more abundant lithic particles (Fig. 3). This 

suggests significant change in the depositional environment from quiet hemipelagic 

conditions to a higher energy environment including the presence of weak bottom currents. 

6.1 Bottom water flow strength indicators 

Zr/Al ratios are relative high with large amplitude variations in Interval II and III. The 

sudden change in the appearance of the Zr/Al record is therefore interpreted as a shift from 

a low energy hemipelagic setting in Interval I, to a higher energy environment controlled by 
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bottom currents that are subject to particle sorting in Interval II and III (Fig. 3). The 

suggestion of increasing energy levels is consistent with the general increase in sand 

content in Intervals II and III relative to the base of the Hole, especially in sections where 

maximum Zr/Al ratios coincide with maximum sand content (i.e. 803 to 789 mbsf; Fig. 4). 

Yet because of the absence of Zr/Al data from the lowermost core of Interval II (Core 57R; 

Fig. 3), we cannot determine with certainty from Zr/Al ratios only whether this transition 

occurs at the Miocene-Pliocene boundary or shortly thereafter. However, parallel behaviour 

between Zr/Al ratios and δ
18

O immediately after the oldest measurement in Interval II and 

the abrupt sedimentation rate change reflected in benthic δ
18

O, suggests an immediate 

change of depositional environment over the Miocene-Pliocene boundary. 

In Interval II, two sandy beds show clear bigradational grading with tracers of bioturbation 

(Core 54R and 55R; 788-803 mbsf; Fig. 2C, 2D, 4). The patterns represents a coarsening 

upward sorting from homogenous muds with sparse bioturbation to more silty/sandy 

deposits until the facies succession reverses. These features are characteristic of contourites 

(Faugères et al., 1984; Gonthier et al., 1984; Rebesco et al., 2014). Similar sedimentary 

sequences to the two sandy beds are characterized as contourite sequences in the Faro Drift 

(Gonthier et al., 1984) and recently envisioned for the Early Pleistocene for Site IODP 

U1386 in Alonso et al., (2016). These are distinctly different from the instantly deposited 

(un-bioturbated) turbiditic, normal grading, fining upwards sequences (cf. Bouma et al., 

1962). Discrimination between the sand grade >63-<150 μm and >150 μm weight % 

confirms the hypothesis of continuous sedimentary deposition under the influence of 

bottom water current flow. Therefore, the two sandy beds with bi-directional grading are 
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interpreted as the earliest clear sandy contouritic deposits above the third precession cycle 

above the tentative Miocene-Pliocene boundary. 

Seismic data imaging of the Early Pliocene shows features of slope instability on the 

Algarve Margin, north of IODP Site U1387 (Brackenridge et al., 2013; Hernández-Molina 

et al., 2015, 2014b; Martínez del Olmo, 2004; Roque et al., 2012). This sedimentary source 

may account for the tripling of the sedimentation rate that occurs at the Miocene-Pliocene 

boundary. However, the change in sedimentation rate is abrupt, rather than gradational, 

which is what would be expected if sedimentation rate changes as a result of progressive 

tectonic uplift of the margins and/or infilling of the basin, such as is seen in the 

Guadalquivir Basin (Van den Berg et al., 2015). There is also no evidence of significant 

shallowing of the depositional environment at Site IODP U1387 during this period. The 

continuous presence of benthic foraminiferal taxa which have a bathyal upper depth limit, 

suggest a fairly constant bathymetry throughout Intervals I to III. The increasing presence 

of benthic foraminiferal species limited to neritic environments from about 801 mbsf (i.e., 

in Interval II, ~25 m above the Miocene-Pliocene boundary) upwards are interpreted as 

allochthonous. They always occur alongside species with a bathyal upper depth limit and 

are not indicative of a significant shallowing of the water depth at Hole U1387C. The 

shallower benthic foraminifera are probably introduced by pulses of episodic turbiditic-like 

downslope transport, resulting in the cm-scale sandy layers on the upper slope (Fig. 2D; 

´sand influx´ Fig. 4). In most cases, these thin turbiditic beds are almost destroyed by the 

combined action of bottom currents and macrobenthic communities that buried and 

excavate within the sediments (Dorador and Rodríguez-Tovar, 2016; Rodríguez-Tovar et 

al., 2015). Often only small patches of sand were preserved within a matrix of mud (Fig. 
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2F). If the increase in sedimentation rate was the result of instability on the Algarve margin, 

then this shallow-water material likely resulted from direct downslope sediment transport. 

If, however, the abrupt sedimentation rate increase resulted from the onset or an increase of 

along-slope transport, then the shallow water material could derive from an up-current 

source. Most likely, a combination of the two processes has occurred; increased slope 

instability due to tectonic uplift causing increased sediment input from the northern Algarve 

Margin, while along-slope flow provided suspended load from the distant Guadalquivir 

drainage basin, similar to the Late Pleistocene in IODP U1387 and U1386 (Alonso et al., 

2016). In addition, the along-slope suspended load may have been amplified due to 

suggested tectonic uplift from the Early Pliocene (Hernández-Molina et al., 2014b). Interval 

III shows even higher grain size fractions than Interval II, suggesting increased influence of 

the along- and/or downslope processes. A possible increased terrigenous input from of the 

Guadalquivir and Guadiana rivers into the Gulf of Cadiz during the warm climate of the 

early Pliocene (Ducassou et al., 2015; Miller et al., 2005) may have amplified the along 

and/or downslope processes. 

In summary, Hole U1387C shows features in Intervals II and III (lowermost Pliocene) that 

are consistent with transport and deposition by weak along-slope bottom water currents. 

These features are not present in Interval I (Miocene), that suggests low or absent influence 

of bottom current flow across Site U1387. Thus, either an increase or the onset of the 

bottom water current occurred immediately at or shortly after the Miocene-Pliocene 

boundary. The overall increase in sand content in Intervals II and III may reflect a further 

increase in flow strength during the earliest Pliocene. Likely, the increase in sedimentation 
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rate at the Miocene-Pliocene boundary is the result of a combination of local instability of 

the margins and the onset of along-slope transport.  

6.2 Origin of bottom water current flow. 

MOW today is apparent as a warmer intermediate water mass along the margins of south 

west Iberia penetrating the Gulf of Cadiz from the Strait of Gibraltar (Hernández-Molina et 

al., 2014a). Consequently, if the Gibraltar Strait were closed, colder intermediate Atlantic 

waters would be expected at the same water depths. The temperature effect should be 

reflected in the benthic foraminiferal δ
18

O, where colder conditions and decreased MOW 

result in an increase in the δ
18

O values. The benthic stable isotope records of NE Atlantic 

ODP Site 982 (1134 m water depth; Hodell et al., 2001) and onshore Ain el Beida 

(Krijgsman et al., 2004; van der Laan et al., 2005) and Loulja sections (Van der Laan et al., 

2006) are compared with the benthic stable isotope record of Site U1387 in order to 

evaluate shorter scale patterns and relative off-sets (Fig. 8). The offset of about 1.2 ‰ 

between the benthic δ
18

O records from ODP Site 982 and NW Morocco has been 

interpreted as the temperature difference between cold Upper North East Atlantic Deep 

Water (UNEADW) at Site ODP 982 and warmer near-surface waters in NW Morocco in 

Van den Berg et al. (2015). The offset between the U1387C benthic oxygen isotope record 

and ODP 982 is smaller than its offset relative to NW Morocco, particularly during the 

Messinian (Fig. 8B). Ignoring the potential changes in the δ
18

O of the water, the reduced 

δ
18

O-offset between Site ODP 982 and IODP U1387 can indicate that temperature of 

intermediate Atlantic waters in the Gulf of Cadiz was closer to that of UNEADW in the 

Late Miocene. Counterintuitively, the δ
18

O of today´s MOW is higher (0.5 to 1.1 ‰) 

compared to NEADW (-0.1 to 0.5 ‰; Voelker et al., 2015a), however, the temperature 
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difference between these two water masses is between 8 and 10 °C. Hence the temperature 

effect on the shell of the benthic foraminifer δ
18

O is much higher than the effect of δ
18

O of 

the water (Epstein et al., 1953, 1951). This relation is evident during the transition from 

Marine Isotope Stage 32 to 31 in IODP Hole U1387, where an increase of MOW (XRF 

high Zr/Al ratios) results in lower benthic foraminiferal δ
18

O (Voelker et al., 2015b). 

Therefore, the observed decrease in benthic δ
18

O during the early Pliocene and its stepped 

divergence away from ODP 982 values suggests a gradual warming of intermediate 

Atlantic Waters near Gibraltar (Figs. 8B). The temperature increase over the studied period 

can be attributed to the absence or minor influence of warm MOW during the Messinian 

and the presence or increase of warmer MOW during the Pliocene. Furthermore, increasing 

amplitudes that appear in Interval II and are even larger in Interval III may be attributed to 

increasingly fluctuating temperatures caused by varying influences of MOW over periods 

of insolation minima and maxima. Both arguments suggest that the increase or onset of 

bottom water current flow over the Miocene-Pliocene boundary can be attributed to MOW. 

A significant shallowing that would cause the change in bottom water temperatures at Site 

U1387C during the earliest Pliocene is excluded based on the benthic foraminifera 

analyses.  

Interestingly, amplitudes of benthic δ
18

O at Site U1387 do not only increase over the 

Miocene-Pliocene boundary, but also during the Messinian they are larger than amplitudes 

at Site ODP 982, Ain el Beida and Loulja. The Montemayor core reveals the same feature 

as U1387C (Pérez-Asensio et al., 2012; Van den Berg et al., 2015). The difference in 

amplitude of Hole U1387 and ODP 982 must be attributed to either a relative change of 

δ
18

O in the water mass or temperature. Increased amplitudes during the Pliocene can be 

attributed to fluctuations in MOW, however, it is thought that during the Messinian Salinity 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

33 
 

Crisis MOW was either extensively reduced or even absent (Flecker et al., 2015). Larger 

amplitudes due to larger temperature changes of shallower water depths can be excluded, 

because the shallower Loulja and Ain el Beida do not show the larger amplitudes. These 

sites are closer to the thermocline and thus more sensitive to temperature changes on 

glacial-interglacial cycles. One alternative, however speculative since there are no flow 

strength indicators observed in the sediments, is that the relatively high amplitude 

variations in benthic δ
18

O in U1387C compared with both shallower and deeper locations 

hint towards the presence of weak MOW during the Messinian. 
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Conclusions 

We present evidence that the flow of Mediterranean-Atlantic bottom water began very 

shortly after the Messinian Salinity Crisis in the Gulf of Cadiz from IODP Site U1387. This 

study provides a chronostratigraphic framework for the lower part of IODP Site U1387C 

utilising biostratigraphic, paleomagnetic, and cyclostratigraphic constraints. Our data 

suggest that the record extends into the latest Messinian and includes the Miocene-Pliocene 

boundary. Seismic data linking Site U1387C and the Algarve-2 well, as well as 

sedimentary changes in the sequence itself constrains the Miocene-Pliocene boundary to 

around 826 mbsf. Sediment deposition during the latest Messinian in the Gulf of Cadiz took 

place in a relatively quiet, hemipelagic environment driven by precessionally controlled 

Mediterranean monsoonal induced oscillations, with negligible evidence of bottom water 

flow strength. During the earliest Pliocene, an immediate decrease in the benthic δ
18

O
 
may 

be the result from the direct warming of Atlantic Intermediate waters due to increased 

Mediterranean-Atlantic exchange. The increase in sedimentation rate and as well as 

elevated variable Zr/Al ratios could have resulted from the onset of weak along-slope 

bottom water currents immediately at or right after the Miocene-Pliocene boundary. The 

occurrence of contouritic sedimentation in the Gulf of Cadiz results in tow bigradational 

sandy beds above the third precession cycles after the Miocene-Pliocene boundary. Shallow 

water benthic foraminifers indicate that, besides along-slope transport, down-slope 

transport was present, redistributing shallow marine (continental shelf) particles to the 

upper slope. 
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Table 1. Planktic biostratigraphic events used in the present study and their position (mbsf) 

in IODP Hole U1387C and if it is stated in the preliminary IODP report (Expedition 339 

Scientist, 2012). FO = First Occurrence, LO = Last Occurrence. 

 

Hole U1387C depth 

[mbsf]  

   
Planktic 

foraminifera 

biohorizon 

Top Bottom Mean 
Preliminary 

IODP report 

Age 

Bio-

event 

[Ma] 

Reference 

LO G. margaritae 558.9 561.89 560.4 Yes 3.85 Lourens et al., 2004 

FO G. puncticulata 629.12 632.52 630.82 Yes 4.52 Lourens et al., 2004 

Influx G. menardii 752.4 751.3 751.85 No 

5.55, 

5.51, 

5.31 

Krijgsman et al., 2004; 

Van der laan et al., 2006 

Dex/sin coiling N. 

acostaensis 

808.22 809.52 808.87 
No 

5.30, 

5.32 

Lourens et al., 1996; 

Iaccarino et al., 1999b 841.8 
  

Acmee G. 

margaritae > 10% 

Not present  

No 

5.84-

5.75 

Krijgsman et al., 

2004;  

(below bottom of the 

hole) 

5.84-

5.70 

Van den Berg et 

al., 2015  

Sinistral to dextral 

coiling change N. 

acostaensis 

Not present  

No 6.37 

Hilgen and Krijgsman, 

1999; Krijgsman et al., 

2004; Sierro et al., 2001, 

Lourens et al., 2004 

(below bottom of the 

hole) 
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Table 2. Wavelengths of cyclical alternations of δ
18

O for selected intervals. *Three cyclical 

alternations are visible in the δ
18

O record plus an additional cycle visible in δ
13

C is taken 

into consideration. 

 

Hole U1387C depth 

[mbsf]    

Core Top Bottom 
Length  Cycles  Length/cycle 

[m] [-] [m/cycle] 

48R 731.2 736.91 5.71 <1 - 

54R-57R 790.44 819.91 29.47 5.0 5.89 

      
58R 828.92 832.92 4.00 2.0 2.00 

59R 837.90 844.50 6.60 2.5 2.64 

61R 856.68 864.42 7.74 3.0+1* 1.94 

   
Weighted average 

 
   

Interval I (58R-61R): 2.16 
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Figure 1. Hydrography of the Gulf of Cadiz showing the main modern flow paths of 

MOW, specified as the Upper and Lower branch (modified after Hernández-Molina et al., 

2003). Locations of IODP Site U1386 and U1387, Algarve-2, Site ODP 982, MD01-2444, 

the onshore Montemayor-1 core in SW Spain and exposed section of Ain el Beida/Loulja in 

NW Morocco are indicated. 
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Figure 2. Representative photographs of core sections from each interval (A-E). Coloured 

Xs indicate their positions in the hole, along with the iODP sample name that gives the 

precise location of the image (A) Sharp contact within greenish grey to very dark greenish 

grey nannofossil mud with colour alternation in a sandy interval. Bioturbation is visible 

(746.25 to 746.55 mbsf). (B) Cemented sandstone with biogenic carbonate (749.48 to 

749.63 mbsf.). (C) Homogenous sandier sediments (Interval II, 790.28 to 790.43 mbsf). (D) 

Thin 2 cm beds of dark greenish grey silty sand (792.61 to 792.76 mbsf). (E) Distinct 

bioturbation with smaller average grain size (842.25 to 842.40 mbsf). (F) Small patches of 

sand preserved within a matrix of mud excavated by macrobenthic communities (771.62 to 

771.86 mbsf). (G) 5-point moving average (black) of the colour reflectance (L*) (open grey 

circles) is compared with darker colours of the core pictures with brown shades. 
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Figure 3. Palaeo climate records of IODP Site U1387C from 730-865 mbsf. Intervals I, II 

and III, magnetostratigraphic polarities, core numbers and their recovery, and colour 

changes from core photographs are shown above the charts (Expedition 339 Scientists, 

2013a). Green shaded areas indicate darker colours in core photographs. Age ranges are 

displayed on top of the graph. (A) δ
18

O of benthic Cibicidoides pachyderma >250 μm. 

Grey horizontal bars show average δ
18

O values per interval. (B) Elemental Zr/Al ratios with 

five point moving average in black. (C) Weight % sand >63 μm as a percentage of total dry 

weight. 
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Figure 4. Grain size fractions from >63 to <150 μm (orange) and >150 μm (red) from 788 

to 806 mbsf. Core numbers and pictures are displayed on top of the graph. Two outliers are 

explained by presence of pyrite and a centimetre scale sand influx (visible on core photos). 

The distinct increase and decrease in the grain size fraction are indicating the bigradational 

pattern (accentuated with black arrows). 
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Figure 5. Planktic foraminifera biostratigraphy of Site U1387. Relative abundances are 

displayed. The light blue shaded area shows the “acme” of G. margaritae.   The %dex N. 

acostaensis displays the relative distribution of dex/(dex+sin) of N. acostaensis. The purple 

shaded area indicates that most species have dextral coiling. The two arrows highlight 

dextral to sinistral coiling changes. 
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Figure 6. Magnetostratigraphic interpretation for magnetozones between 550 mbsf and the 

base of Hole U1387C. The inclinations plotted are the preferred inclinations determined by 

principal component analysis (PCA), and are given in the Supplementary Data. The 

symbols reflect the different quality of the results as discussed in the text and 

Supplementary Data Quality 3 (red circles), Quality 4 (blue squares), and Quality 5 (green 

triangles), which are plotted along the 0° inclination merely to show the depth at which 

they occur. 
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Figure 7. Chronostratigraphy for Site U1387 from magnetostratigraphic and 

biostratigraphic constraints. 
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Figure 8. (A) Normalized precession-Tilt (obliquity; P-T) and tilt of the La04 solution 

(65ᵒN summer insolation; Laskar et al., 2004), red highlights the clear resemblance with the 

Loulja δ
18

O record. (B) Benthic δ
18

O record of Cibicidoides pachyderma of core U1387C 
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(dotted blue) for the constructed tentative age-model with its three tie-points at 5.0, 5.33 

and 5.72 Ma. Horizontal boxes show the average of IODP U1387 for the different Intervals. 

δ
18

O of Planulina ariminensis of Ain el Beida (Krijgsman et al., 2004; Van der Laan et al., 

2005), Loulja (Van der Laan et al., 2006) and ODP982 (corrected according to Van der 

Laan et al., 2006; Hodell et al., 2001) and the LR04-stack (Lisiecki and Raymo, 2005) are 

displayed as references. Influxes of Globorotalia menardii (G. men) of Loulja, Ain el Beida 

and U1387C are indicated with arrows as well as the dextral to sinistral coiling change of 

Neogloboquadrina acostaensis (sin N. aco) in U1387C. TG stages are taken from Site ODP 

846 (Shackleton et al., 1995), while T stages are used from the LR04- stack. Typically, 

there is a strong 1:1 correlation between P. ariminensis and C. pachyderma, especially for 

δ
18

O (e.g. van der Laan et al., 2006; Voelker et al., 2015). (C) Insolation curve with 

solution La04 (65ᵒN summer insolation) (Laskar et al., 2004). 
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Figure 9. Close-up of δ
18

O (blue) and δ
13

C (green) of benthic Cibicidoides pachyderma 

>250 μm together with colour changes for Cores 58R, 59R and 61R. A theoretical example 

of a corresponding Precession-Tilt-curve is displayed to show resemblance with δ
18

O. This 

suggests the interference patterns of precession and obliquity in the δ
18

O. The used 

obliquity (grey) and precession (light blue) curves are indicated below. 
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Highlights 

 Stratigraphic framework over the Miocene-Pliocene boundary at IODP Site U1387. 

 Abrupt sedimentary changes over the Miocene-Pliocene boundary. 

 Clear hints for onset of Mediterranean Outflow after the Messinian Salinity Crisis. 

 Evidence of bottom water currents in contouritic sedimentation and elevated Zr/Al. 

 Quiet, hemipelagic sediment deposition during the Messinian in the Gulf of Cadiz. 


