9 research outputs found

    Tetrabenzoporphyrin and -mono-, - Cis -di- and tetrabenzotriazaporphyrin derivatives: Electrochemical and spectroscopic implications of meso CH Group replacement with nitrogen

    Get PDF
    Nonperipherally hexyl-substituted metal-free tetrabenzoporphyrin (2H-TBP, 1a) tetrabenzomonoazaporphyrin (2H-TBMAP, 2a), tetrabenzo-cis-diazaporphyrin (2H-TBDAP, 3a), tetrabenzotriazaporphyrin (2H-TBTAP, 4a), and phthalocyanine (2H-Pc, 5a), as well as their copper complexes (1b-5b), were synthesized. As the number of meso nitrogen atoms increases from zero to four, Îmax of the Q-band absorption peak becomes red-shifted by almost 100 nm, and extinction coefficients increased at least threefold. Simultaneously the blue-shifted Soret (UV) band substantially decreased in intensity. These changes were related to the relative electron-density of each macrocycle expressed as the group electronegativity sum of all meso N and CH atom groups, âχR. X-ray photoelectron spectroscopy differentiated between the three different types of macrocyclic nitrogen atoms (the Ninner, (NH)inner, and Nmeso) in the metal-free complexes. Binding energies of the Nmeso and Ninner,Cu atoms in copper chelates could not be resolved. Copper insertion lowered especially the cathodic redox potentials, while all four observed redox processes occurred at larger potentials as the number of meso nitrogens increased. Computational chemical methods using density functional theory confirmed 1b to exhibit a Cu(II) reduction prior to ring-based reductions, while for 2b, Cu(II) reduction is the first reductive step only if the nonperipheral substituents are hydrogen. When they are methyl groups, it is the second reduction process; when they are ethyl, propyl, or hexyl, it becomes the third reductive process. Spectro-electrochemical measurements showed redox processes were associated with a substantial change in intensity of at least two main absorbances (the Q and Soret bands) in the UV spectra of these compounds

    Electrochemical and spectroscopic detection of self-association of octa-alkyl phthalocyaninato cadmium compounds into dimeric species

    No full text
    The solution phase behaviour of non-peripherally substituted octa-hexyl cadmium phthalocyanine 3 and peripherally substituted octa-2-ethylhexyl cadmium phthalocyanine 4 has been investigated in fresh solutions of CH2Cl2, CHCl3-d1 and THF/THF-d8 using 1H NMR spectrometry, UV-Vis spectroscopy, cyclic voltammetry, square wave voltammetry and linear sweep voltammetry. The compounds show an unexpected propensity to form dimeric species in CH2Cl2 and CHCl3-d1, and, in the case of 4, also to a lesser extent in THF/THF-d8. This phenomenon is not observed for their metal-free analogues 1 or 2. The electrochemical results provide particularly strong evidence for the dimeric structures. In particular both the first one-electron oxidation and one-electron reduction waves for 3 and 4, unlike those of 1 and 2, are split. This is consistent with sequential oxidation/reduction of the two Pc ligands within a dimer. The dimeric species are likely to be the immediate precursors of the recently discovered bis-cadmium tris-phthalocyanine triple-decker sandwich complexes 5 and 6 formed from 3 and 4 over a period of time. The electrochemical data for compounds 1–4 also show that (i) relative to the metal-free phthalocyanines, the cadmium phthalocyanines exhibit smaller formal reduction potentials for all but one of the observed electron transfer processes and (ii) the electron transfer processes associated with the peripherally substituted compounds, 2 and 4, are observed at more positive potentials than those for the corresponding non-peripherally substituted analogues 1 and 3
    corecore