50 research outputs found
Volume I. Introduction to DUNE
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology
First measurement of θ<inf>13</inf> from delayed neutron capture on hydrogen in the Double Chooz experiment
The Double Chooz experiment has determined the value of the neutrino oscillation parameter θ13 from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds sin22θ13=0.097±0.034 (stat.)±0.034 (syst.), excluding the no-oscillation hypothesis at 2.0. This result is consistent with previous measurements of sin22θ13
Scintillation light in SBND: simulation, reconstruction, and expected performance of the photon detection system
SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
Constraining The Violation Of The Equivalence Principle With Icecube Atmospheric Neutrino Data
The recent high-statistics high-energy atmospheric neutrino data collected by IceCube open a new window to probe new physics scenarios that are suppressed in lower-energy neutrino experiments. In this paper we analyze the IceCube atmospheric neutrino data to constrain the violation of equivalence principle (VEP) in the framework of three neutrinos with nonuniversal gravitational couplings. In this scenario the effect of the VEP on neutrino oscillation probabilities can be parametrized by two parameters, Δγ21≡ γ2-γ1 and Δγ31≡γ3-γ1, where γi's denote the coupling of neutrino mass eigenstates to the gravitational field. By analyzing the latest muon-tracks data sets of IceCube-40 and IceCube-79, besides providing the two-dimensional allowed regions in the (φΔγ21,φΔγ31) plane, we obtain the upper limits |φΔγ21|<9.1×10-27 (at 90% C.L.), which improves the previous limit by ∼4 orders of magnitude, and |φΔγ31| 6×10-27 (at 90% C.L.), which improves the current limit by ∼1 order of magnitude. Also we discuss in detail and analytically the effect of the VEP on neutrino oscillation probabilities. © 2014 American Physical Society.8911Misner, C.W., Thorne, K.S., Wheeler, J.A., (1973) Gravitation, , (Freeman, San Francisco)Wagner, T.A., Schlamminger, S., Gundlach, J.H., Adelberger, E.G., (2012) Classical Quantum Gravity, 29, p. 184002. , CQGRDG 0264-9381 10.1088/0264-9381/29/18/184002Overduin, J., Mitcham, J., Warecki, Z., (2014) Classical Quantum Gravity, 31, p. 015001. , CQGRDG 0264-9381 10.1088/0264-9381/31/1/015001Hohensee, M.A., Leefer, N., Budker, D., Harabati, C., Dzuba, V.A., Flambaum, V.V., (2013) Phys. Rev. Lett., 111, p. 050401. , PRLTAO 0031-9007 10.1103/PhysRevLett.111.050401Horvat, R., (1998) Mod. Phys. Lett. A, 13, p. 2379. , MPLAEQ 0217-7323 10.1142/S0217732398002539Barkovich, M., Casini, H., D'Olivo, J.C., Montemayor, R., Pulsar motions from neutrino oscillations induced by a violation of the equivalence principle (2001) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 506 (1-2), pp. 20-26. , DOI 10.1016/S0370-2693(01)00401-4, PII S0370269301004014Damour, T., Schaefer, G., (1991) Phys. Rev. Lett., 66, p. 2549. , PRLTAO 0031-9007 10.1103/PhysRevLett.66.2549Damour, T., arXiv:gr-qc/0109063Damour, T., Piazza, F., Veneziano, G., (2002) Phys. Rev. Lett., 89, p. 081601. , PRLTAO 0031-9007 10.1103/PhysRevLett.89.081601Armendariz-Picon, C., Penco, R., (2012) Phys. Rev. D, 85, p. 044052. , PRVDAQ 1550-7998 10.1103/PhysRevD.85.044052Damour, T., Donoghue, J.F., (2010) Classical Quantum Gravity, 27, p. 202001. , CQGRDG 0264-9381 10.1088/0264-9381/27/20/202001Carroll, S.M., Mantry, S., Ramsey-Musolf, M.J., Stubbs, C.W., (2009) Phys. Rev. Lett., 103, p. 011301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.011301Olmo, G.J., Violation of the equivalence principle in modified theories of gravity (2007) Physical Review Letters, 98 (6), p. 061101. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.061101&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.061101Adunas, G.Z., Rodriguez-Milla, E., Ahluwalia, D.V., (2000) Phys. Lett. B, 485, p. 215. , PYLBAJ 0370-2693 10.1016/S0370-2693(00)00697-3Gasperini, M., (1988) Phys. Rev. D, 38, p. 2635. , PRVDAQ 0556-2821 10.1103/PhysRevD.38.2635Gasperini, M., (1989) Phys. Rev. D, 39, p. 3606. , PRVDAQ 0556-2821 10.1103/PhysRevD.39.3606Halprin, A., Leung, C.N., (1991) Phys. Rev. Lett., 67, p. 1833. , PRLTAO 0031-9007 10.1103/PhysRevLett.67.1833Pantaleone, J.T., Halprin, A., Leung, C.N., (1993) Phys. Rev. D, 47, pp. R4199. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.R4199Butler, M.N., Nozawa, S., Malaney, R.A., Boothroyd, A.I., (1993) Phys. Rev. D, 47, p. 2615. , PRVDAQ 0556-2821 10.1103/PhysRevD.47.2615Bahcall, J.N., Krastev, P.I., Leung, C.N., (1995) Phys. Rev. D, 52, p. 1770. , PRVDAQ 0556-2821 10.1103/PhysRevD.52.1770Halprin, A., Leung, C.N., Pantaleone, J.T., (1996) Phys. Rev. D, 53, p. 5365. , PRVDAQ 0556-2821 10.1103/PhysRevD.53.5365Mureika, J.R., (1997) Phys. Rev. D, 56, p. 2408. , PRVDAQ 0556-2821 10.1103/PhysRevD.56.2408Mansour, S.W., Kuo, T.-K., (1999) Phys. Rev. D, 60, p. 097301. , PRVDAQ 0556-2821 10.1103/PhysRevD.60.097301Gago, A.M., Nunokawa, H., Zukanovich Funchal, R., (2000) Phys. Rev. Lett., 84, p. 4035. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4035Casini, H., D'Olivo, J.C., Montemayor, R., (2000) Phys. Rev. D, 61, p. 105004. , PRVDAQ 0556-2821 10.1103/PhysRevD.61.105004Majumdar, D., Raychaudhuri, A., Sil, A., Golar neutrino results and violation of the equivalence principle: An analysis of the existing data and predictions for SNO (2001) Physical Review D, 63 (7), p. 073014. , DOI 10.1103/PhysRevD.63.073014Mikheev, S.P., Smirnov, A.Y., (1986) Nuovo Cimento Soc. Ital. Fis., 9, p. 17. , NIFCAS 0390-5551 10.1007/BF02508049Mikheev, S.P., Smirnov, A.Y., (1985) Yad. Fiz., 42, p. 1441. , IDFZA7 0044-0027Mikheev, S.P., Smirnov, A.Y., (1985) Sov. J. Nucl. Phys., 42, p. 913. , [, ()]. SJNCAS 0038-5506Minakata, H., Nunokawa, H., (1995) Phys. Rev. D, 51, p. 6625. , PRVDAQ 0556-2821 10.1103/PhysRevD.51.6625Valdiviesso, G.A., Guzzo, M.M., De Holanda, P.C., (2011) Phys. Lett. B, 701, p. 240. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.05.057Foot, R., Volkas, R.R., Yasuda, O., (1998) Phys. Lett. B, 421, p. 245. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)00013-6Foot, R., Volkas, R.R., Yasuda, O., (1998) Phys. Lett. B, 433, p. 82. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)00706-0Foot, R., Leung, C.N., Yasuda, O., (1998) Phys. Lett. B, 443, p. 185. , PYLBAJ 0370-2693 10.1016/S0370-2693(98)01311-2Fogli, G.L., Lisi, E., Marrone, A., Scioscia, G., (1999) Phys. Rev. D, 60, p. 053006. , PRVDAQ 0556-2821 10.1103/PhysRevD.60.053006Gonzalez-Garcia, M.C., Maltoni, M., Atmospheric neutrino oscillations and new physics (2004) Physical Review D, 70 (3), p. 033010. , DOI 10.1103/PhysRevD.70.033010Gonzalez-Garcia, M.C., Halzen, F., Maltoni, M., Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data (2005) Physical Review D - Particles, Fields, Gravitation and Cosmology, 71 (9), pp. 1-13. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRD:71, DOI 10.1103/PhysRevD.71.093010, 093010Battistoni, G., Becherini, Y., Cecchini, S., Cozzi, M., Dekhissi, H., Esposito, L.S., Giacomelli, G., Togo, V., Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data (2005) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 615 (1-2), pp. 14-18. , DOI 10.1016/j.physletb.2005.04.010, PII S0370269305004867Morgan, D., Winstanley, E., Brunner, J., Thompson, L.F., (2008) Astropart. Phys., 29, p. 345. , APHYEE 0927-6505 10.1016/j.astropartphys.2008.03.005Abbasi, R., (2009) Phys. Rev. D, 79, p. 102005. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.79.102005Pakvasa, S., Simmons, W.A., Weiler, T.J., (1989) Phys. Rev. D, 39, p. 1761. , 1761. PRVDAQ 0556-2821 10.1103/PhysRevD.39.1761Guzzo, M.M., Nunokawa, H., Tomas, R., (2002) Astropart. Phys., 18, p. 277. , APHYEE 0927-6505 10.1016/S0927-6505(02)00149-4Minakata, H., Smirnov, A.Y., (1996) Phys. Rev. D, 54, p. 3698. , PRVDAQ 0556-2821 10.1103/PhysRevD.54.3698Iida, K., Minakata, H., Yasuda, O., (1993) Mod. Phys. Lett. A, 8, p. 1037. , MPLAEQ 0217-7323 10.1142/S021773239300252XMann, R.B., Sarkar, U., (1996) Phys. Rev. Lett., 76, p. 865. , PRLTAO 0031-9007 10.1103/PhysRevLett.76.865Abbasi, R., (2011) Phys. Rev. D, 83, p. 012001. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.83.012001Aartsen, M.G., (2013) Phys. Rev. Lett., 111, p. 081801. , (ICECUBE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.111.081801Will, C.M., (1993) Theory and Experiment in Gravitational Physics, , (Cambridge University Press, Cambridge, England)Dziewonski, A.D., Anderson, D.L., (1981) Phys. Earth Planet. Inter., 25, p. 297. , PEPIAM 0031-9201 10.1016/0031-9201(81)90046-7Gonzalez-Garcia, M.C., Maltoni, M., Salvado, J., Schwetz, T., J. High Energy Phys., 2012 (12), p. 123. , JHEPFG 1029-8479 10.1007/JHEP12(2012)123Aartsen, M.G., (2014) Phys. Rev. D, 89, p. 102001. , (ICECUBE Collaboration),. PRVDAQ 1550-7998 10.1103/PhysRevD.89.102001Aartsen, M.G., (2013) Phys. Rev. Lett., 110, p. 151105. , (ICECUBE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.151105Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., Sanuki, T., (2007) Phys. Rev. D, 75, p. 043006. , PRVDAQ 1550-7998 10.1103/PhysRevD.75.043006Sajjad Athar, M., Honda, M., Kajita, T., Kasahara, K., Midorikawa, S., (2013) Phys. Lett. B, 718, p. 1375. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.12.016Esmaili, A., Halzen, F., Peres, O.L.G., J. Cosmol. Astropart. Phys., 2012 (11), p. 041. , JCAPBP 1475-7516 10.1088/1475-7516/2012/11/041Esmaili, A., Smirnov, A.Y., J. High Energy Phys., 2013 (6), p. 026. , JHEPFG 1029-8479 10.1007/JHEP06(2013)026Esmaili, A., Smirnov, A.Y., J. High Energy Phys., 2013 (12), p. 014. , JHEPFG 1029-8479 10.1007/JHEP12(2013)014Abbasi, R., (2012) Astropart. Phys., 35, p. 615. , (IceCube Collaboration),. APHYEE 0927-6505 10.1016/j.astropartphys.2012. 01.004Esmaili, A., Halzen, F., Peres, O.L.G., J. Cosmol. Astropart. Phys., 2013 (7), p. 048. , JCAPBP 1475-7516 10.1088/1475-7516/2013/07/048Colladay, D., Kostelecky, V.A., (1997) Phys. Rev. D, 55, p. 6760. , PRVDAQ 0556-2821 10.1103/PhysRevD.55.6760Colladay, D., Kostelecky, V.A., (1998) Phys. Rev. D, 58, p. 116002. , PRVDAQ 0556-2821 10.1103/PhysRevD.58.116002Kostelecky, A.V., Tasson, J.D., (2011) Phys. Rev. D, 83, p. 016013. , PRVDAQ 1550-7998 10.1103/PhysRevD.83.016013Kostelecky, V.A., Mewes, M., Lorentz and CPT violation in neutrinos (2004) Physical Review D, 69 (1), p. 016005. , DOI 10.1103/PhysRevD.69.016005Alan Kostelecky, V., Mewes, M., Lorentz and CPT violation in the neutrino sector (2004) Physical Review D, 70 (3), p. 031902. , DOI 10.1103/PhysRevD.70.031902Kostelecky, V.A., Mewes, M., (2004) Phys. Rev. D, 70, p. 076002. , PRVDAQ 1550-7998 10.1103/PhysRevD.70.076002Diaz, J.S., Kostelecky, V.A., Mewes, M., (2009) Phys. Rev. D, 80, p. 076007. , PRVDAQ 1550-7998 10.1103/PhysRevD.80.076007Katori, T., Alan Kostelecky, V., Tayloe, R., Global three-parameter model for neutrino oscillations using Lorentz violation (2006) Physical Review D - Particles, Fields, Gravitation and Cosmology, 74 (10), p. 105009. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevD.74.105009&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevD.74.10500
Background-independent Measurement Of θ13 In Double Chooz
The oscillation results published by the Double Chooz Collaboration in 2011 and 2012 rely on background models substantiated by reactor-on data. In this analysis, we present a background-model-independent measurement of the mixing angle θ13 by including 7.53 days of reactor-off data. A global fit of the observed antineutrino rates for different reactor power conditions is performed, yielding a measurement of both θ13 and the total background rate. The results on the mixing angle are improved significantly by including the reactor-off data in the fit, as it provides a direct measurement of the total background rate. This reactor rate modulation analysis considers antineutrino candidates with neutron captures on both Gd and H, whose combination yields sin2(2θ13) = 0.102 ± 0.028(stat.) ± 0.033(syst.). The results presented in this study are fully consistent with the ones already published by Double Chooz, achieving a competitive precision. They provide, for the first time, a determination of θ13 that does not depend on a background model. © 2014 The Authors