17 research outputs found

    The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems

    Get PDF
    Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide “out-of-sample” evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (δ 18O, δ 13C) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data. The compiled data are available at https://doi.org/10.17864/1947.147

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices

    Late Quaternary Variations in the South American Monsoon System as Inferred by Speleothems—New Perspectives Using the SISAL Database

    No full text
    Here we present an overview of speleothem δ18O records from South America, most of which are available in the Speleothem Isotopes Synthesis and Analysis (SISAL_v1) database. South American tropical and subtropical speleothem δ18O time series are primarily interpreted to reflect changes in precipitation amount, the amount effect, and consequently history of convection intensity variability of convergence zones such as the Intertropical Convergence Zone (ITCZ) and the South America Monsoon System (SAMS). We investigate past hydroclimate scenarios in South America related to the South American Monsoon System in three different time periods: Late Pleistocene, Holocene, and the last two millennia. Precession driven summertime insolation is the main driver of convective variability over the continent during the last 120 kyrs (from present day to 120 kyrs BP), including the Holocene. However, there is a dipole between speleothem δ18O records from western and eastern South America. Records located in the central region of Brazil are weakly affected by insolation-driven variability, and instead are more susceptible to the variability associated with the South Atlantic Convergence Zone (SACZ). Cold episodic events in the Northern Hemisphere, such as Heinrich and Bond Events, and the Little Ice Age, increase the convective activity of the SAMS, resulting in increased precipitation amount in South America

    Linking Speleothem And Soil Magnetism In The Pau D'alho Cave (central South America)

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth-rate speleothem (similar to 168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first-order reversal curves, and low-temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14-17mT for an average grain-size of similar to 1-2 mu m, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow delta C-13 and delta O-18 data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer-scale pedogenic minerals and thus reduces detrital fluxes into the cave.Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth-rate speleothem (similar to 168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope dat1211070247039CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)304934/2014‐3, 454609/2014‐02043/20142012/03942‐4, 2012/01187‐

    Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil

    No full text
    Well-dated high-resolution oxygen isotope records of speleothems in central-eastern Brazil spanning from 1.3 to 10.2 kyr B.P. reveal that the occurrence of abrupt variations in monsoon precipitation is not random. They show a striking match with Bond events and a significant pacing at ∼800 yr, a dominant periodicity present in sea surface temperature records from both the North Atlantic and equatorial Pacific Oceans that is possibly related to periods of low solar activity (high 14C based on the atmospheric Δ14C record). The precipitation variations over central-eastern Brazil are broadly antiphased with the Asian and Indian Monsoons during Bond events and show marked differences in duration and structure between the early and late Holocene. Our results suggest that these abrupt multicentennial precipitation events are primarily linked to changes in the North Atlantic meridional overturning circulation (AMOC). Anomalous cross-equatorial flow induced by negative AMOC phases may have modulated not only the monsoon in South America but also affected El Niño−like conditions in the tropical Pacific during the Holocene

    Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years

    No full text
    International audienceRecent paleoclimatic studies suggest that changes in the tropical rainbelt across the Atlantic Ocean during the past two millennia are linked to a latitudinal shift of the Intertropical Convergence Zone (ITCZ) driven by the Northern Hemisphere (NH) climate. However, little is known regarding other potential drivers that can affect tropical Atlantic rainfall, mainly due to the scarcity of adequate and high-resolution records. In this study, we fill this gap by reconstructing precipitation changes in Northeastern Brazil during the last 2,300 years from a high-resolution lake record of hydrogen isotope compositions of plant waxes. We find that regional precipitation along the coastal area of South America was not solely governed by north-south displacements of the ITCZ due to changes in NH climate, but also by the contraction and expansion of the tropical rainbelt due to variations in sea surface temperature and southeast trade winds in the tropical South Atlantic Basin

    Reconstruction of Holocene coupling between the South American Monsoon System and local moisture variability from speleothem δ18O and 87Sr/86Sr records

    No full text
    Investigating controls on past variability of South American hydroclimate is critical to assessing its response to future warming scenarios. δ18O records from South America offer insight into past variability of the South American Monsoon System (SAMS). The controls, however, on precipitation δ18O values can be decoupled from precipitation amount at a given site and, thereby, limit local moisture condition reconstructions. Here we use a principal components analysis to assess the coherence of speleothem and lake core Holocene δ18O records in tropical and subtropical South America to evaluate the extent to which δ18O variability reflects changes in SAMS intensity at different sites across the region. The main mode of variability across Holocene δ18O records (PC1) closely tracks austral summertime insolation, consistent with existing work. Sites towards the periphery of the continent are heavily weighted on PC1, whereas interior sites as not. Further δ18O variability at interior sites bear little similarity to each other and implicate controls, beyond regional monsoon intensity, on these δ18O records. Further, we develop speleothem 87Sr/86Sr records spanning the Holocene from Tamboril Cave (Brazilian Highlands), Paraíso Cave (eastern Amazon Basin), Jaraguá Cave (Mato Grosso do Sul Plateau), and Botuverá Cave (Atlantic coastal plain) to investigate coupling between reconstructed monsoon variability (reflected by PC1) and local moisture conditions (interpreted from 87Sr/86Sr records). We interpret speleothem 87Sr/86Sr variability as a proxy of local moisture conditions, reflecting the degree of water-rock interaction with the cave host rock as driven by variations in water residence time. Speleothem 87Sr/86Sr records from all the sites, except Botuverá cave, do not co-vary with PC1, suggesting that local moisture conditions do not necessarily follow variations in regional monsoon intensity at these interior sites. These speleothem 87Sr/86Sr records generally suggest dry mid-Holocene conditions relative to the early- and late-Holocene, consistent with interpretations of other paleo-moisture records in the region, but timing of wet-dry transitions varies between sites. These results highlight that controls, in addition to SAMS variability, might influence δ18O variability. Further, our results suggest spatially variable local moisture conditions at interior sites that do not uniformly respond to regional monsoon intensity, and stress the need for δ18O-independent reconstructions of moisture conditions.Accepted versio

    Multidecadal climate variability in Brazil's Nordeste during the last 3000 years based on speleothem isotope records

    No full text
    We present the first high resolution, approximately similar to 4 years sample spacing, precipitation record from northeastern Brazil (hereafter referred to as 'Nordeste') covering the last similar to 3000 yrs from Th-230-dated stalagmites oxygen isotope records. Our record shows abrupt fluctuations in rainfall tied to variations in the intensity of the South American summer monsoon (SASM), including the periods corresponding to the Little Ice Age (LIA), the Medieval Climate Anomaly (MCA) and an event around 2800 yr B.P. Unlike other monsoon records in southern tropical South America, dry conditions prevailed during the LIA in the Nordeste. Our record suggests that the region is currently undergoing drought conditions that are unprecedented over the past 3 millennia, rivaled only by the LIA period. Using spectral, wavelet and cross-wavelet analyses we show that changes in SASM activity in the region are mainly associated with variations of the Atlantic Multidecadal Oscillation (AMO) and to a lesser degree caused by fluctuations in tropical Pacific SST. Our record also shows a distinct periodicity around 210 years, which has been linked to solar variability. Citation: Novello, V. F., et al. (2012), Multidecadal climate variability in Brazil's Nordeste during the last 3000 years based on speleothem isotope records, Geophys. Res. Lett., 39, L23706, doi: 10.1029/2012GL053936.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil (FAPESP) [2006/06761-0, 2011/39450394]CNSFCNSF [41230524]U.S. NSF [0502535, 3961103404, 1003690]U.S. NSF[2013CB955902

    The Forest Effects on the Isotopic Composition of Rainfall in the Northwestern Amazon Basin

    No full text
    International audienceIn the Amazon basin, intense precipitation recycling across the forest significantly modifies the isotopic composition of rainfall (δ18O, δD). In the tropical hydrologic cycle, such an effect can be identified through deuterium excess (dxs), yet it remains unclear what environmental factors control dxs, increasing the uncertainty of dxs‐based paleoclimate reconstructions. Here we present a 4‐year record of the isotopic composition of rainfall, monitored in the northwestern Amazon basin. We analyze the isotopic variations as a function of the air mass history, based on atmospheric back trajectory analyses, satellite observations of precipitation upstream, leaf area index, and simulated moisture recycling along the transport pathway. We show that the precipitation recycling in the forest exerts a significant control on the isotopic composition of precipitation in the northwestern Amazon basin, especially on dxs during the dry season (r = 0.71). Applying these observations to existing speleothem and pollen paleorecords, we conclude that winter precipitation increased after the mid‐Holocene, as the expansion of the forest allowed for more moisture recycling. Therefore, forest effects should be considered when interpreting paleorecords of past precipitation changes
    corecore