2,481 research outputs found
Future imaging atmospheric telescopes: performance of possible array configurations for gamma photons in the GeV-TeV range
The future of ground based gamma ray astronomy lies in large arrays of
Imaging Atmospheric Cherenkov Telescopes (IACT) with better capabilities: lower
energy threshold, higher sensitivity, better resolution and background
rejection. Currently, designs for the next generation of IACT arrays are being
explored by various groups. We have studied possible configurations with a
large number of telescopes of various sizes. Here, we present the precision of
source, shower core and energy reconstruction for gamma rays in the GeV-TeV
range for different altitudes of observation. These results were obtained
through tools that we have developed in order to simulate any type of IACT
configuration and evaluate its performance.Comment: 4 pages, 4 figures, Proceedings of the 30th ICRC, Merida, Mexico
(2007
Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon
The transverse momentum and rapidity distributions of net protons and
negatively charged hadrons have been measured for minimum bias proton-nucleus
and deuteron-gold interactions, as well as central oxygen-gold and
sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net
protons at midrapidity in central nucleus-nucleus collisions increases both
with target mass for sulphur projectiles and with the projectile mass for a
gold target. The shape of the rapidity distributions of net protons forward of
midrapidity for d+Au and central S+Au collisions is similar. The average
rapidity loss is larger than 2 units of rapidity for reactions with the gold
target. The transverse momentum spectra of net protons for all reactions can be
described by a thermal distribution with `temperatures' between 145 +- 11 MeV
(p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The
multiplicity of negatively charged hadrons increases with the mass of the
colliding system. The shape of the transverse momentum spectra of negatively
charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and
central nucleus-nucleus collisions. The mean transverse momentum is almost
constant in the vicinity of midrapidity and shows little variation with the
target and projectile masses. The average number of produced negatively charged
hadrons per participant baryon increases slightly from p+p, p+A to central
S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.
26Al kinematics: superbubbles following the spiral arms? : Constraints from the statistics of star clusters and HI supershells
High energy resolution spectroscopy of the 1.8 MeV radioactive decay line of 26Al with the SPI instrument on board the INTEGRAL satellite has recently revealed that diffuse 26Al has large velocities in comparison to other components of the interstellar medium in the Milky Way. 26Al shows Galactic rotation in the same sense as the stars and other gas tracers, but reaches excess velocities up to 300 km s−1Peer reviewe
NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array
NectarCAM is a camera proposed for the medium-sized telescopes of the
Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV
to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the
heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog
to Digital converter. The camera will be equipped with 265 7-photomultiplier
modules, covering a field of view of 8 degrees. Each module includes the
photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and
Ethernet transceiver. The recorded events last between a few nanoseconds and
tens of nanoseconds. The camera trigger will be flexible so as to minimize the
read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data
rate of more than 4 kHz with less than 5\% dead time. The camera concept, the
design and tests of the various subcomponents and results of thermal and
electrical prototypes are presented. The design includes the mechanical
structure, cooling of the electronics, read-out, clock distribution, slow
control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7
We report on a possible association of the recently discovered very
high-energy -ray source HESS J1825--137 with the pulsar wind nebula
(commonly referred to as G 18.0--0.7) of the year old
Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a
significance of 8.1 in the Galactic Plane survey conducted with the
H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset
by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have
revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula
extending to the south of the pulsar. We argue that the observed morphology and
TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be
associated: the lifetime of TeV emitting electrons is expected to be longer
compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in
electrons from earlier epochs (when the spin-down power was larger)
contributing to the present TeV flux. These electrons are expected to be
synchrotron cooled, which explains the observed photon index of , and
the longer lifetime of TeV emitting electrons naturally explains why the TeV
nebula is larger than the X-ray size. Finally, supernova remnant expansion into
an inhomogeneous medium is expected to create reverse shocks interacting at
different times with the pulsar wind nebula, resulting in the offset X-ray and
TeV -ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter
Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017
Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very
high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio
fluxes. Our aim is to understand the radiative processes by investigating the
observed emission and its production mechanism using the High Energy
Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent
observations of the BL Lac source RGB J0152+017 made in late October and
November 2007 with the H.E.S.S. array consisting of four imaging atmospheric
Cherenkov telescopes. Contemporaneous observations were made in X-rays by the
Swift and RXTE satellites, in the optical band with the ATOM telescope, and in
the radio band with the Nancay Radio Telescope. Results: A signal of 173
gamma-ray photons corresponding to a statistical significance of 6.6 sigma was
found in the data. The energy spectrum of the source can be described by a
powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux
above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source
spectral energy distribution (SED) can be described using a two-component
non-thermal synchrotron self-Compton (SSC) leptonic model, except in the
optical band, which is dominated by a thermal host galaxy component. The
parameters that are found are very close to those found in similar SSC studies
in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE
gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from
the SED in Swift data, allows clearly classification it as a
high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures
Very high energy gamma rays from the direction of Sagittarius A*.
We report the detection of a point-like source of very high energy (VHE) -rays coincident within 1' of Sgr A *, obtained with the HESS array of Cherenkov telescopes. The -rays exhibit a power-law energy spectrum with a spectral index of and a flux above the 165 GeV threshold of m -2 s -1. The measured flux and spectrum differ substantially from recent results reported in particular by the CANGAROO collaboration
First Results from The GlueX Experiment
The GlueX experiment at Jefferson Lab ran with its first commissioning beam
in late 2014 and the spring of 2015. Data were collected on both plastic and
liquid hydrogen targets, and much of the detector has been commissioned. All of
the detector systems are now performing at or near design specifications and
events are being fully reconstructed, including exclusive production of
, and mesons. Linearly-polarized photons were
successfully produced through coherent bremsstrahlung and polarization transfer
to the has been observed.Comment: 8 pages, 6 figures, Invited contribution to the Hadron 2015
Conference, Newport News VA, September 201
Review of the development of cesium iodide photocathodes for application to large RICH detectors
CsI photocathodes were studied in order to evaluate their potential use as large photo converters in RICH detectors for the PID system of ALICE at LHC in heavy-ion collider mode. It has been demonstrated that a quantum efficiency close to the reference value obtained on small samples can be obtained on CsI layers evaporated on large pad electrodes operated in a MWPC at atmospheric pressure. We present a survey of the results obtained in the laboratory on small samples irradiated with UV-monochromatic beams and with large area RICH detectors of proximity-focusing geometry in a 3 GeV/c pion beam
- …
