124 research outputs found

    Global Lagrangian atmospheric dispersion model

    Get PDF
    The Global Lagrangian Atmospheric Dispersion Model (GLADIM) is described. GLADIM is based on the global trajectory model, which had been developed earlier and uses fields of weather parameters from different atmospheric reanalysis centers for calculations of trajectories of air mass that include trace gases. GLADIM includes the parameterization of turbulent diffusion and allows the forward calculation of concentrations of atmospheric tracers at nodes of a global regular grid when a source is specified. Thus, GLADIM can be used for the forward simulation of pollutant propagation (volcanic ash, radionuclides, and so on). Working in the reverse direction, GLADIM allows the detection of remote sources that mainly contribute to the tracer concentration at an observation point. This property of Lagrangian models is widely used for data analysis and the reverse modeling of emission sources of a pollutant specified. In this work we describe the model and some results of its validation through a comparison with results of a similar model and observation data

    Observations of atmospheric variability and soil exhalation rate of 222Radon at a Russian forest site: Technical approach and deployment for boundary layer studies

    Get PDF
    A monitor for continuous observations of the atmospheric 222Rn daughter activity has been improved and successfully implemented in a field study at a Russian site (Fyodorovskoye Forest Reserve). The alpha-activity of the short-lived 222Rn and 220Rn (212Pb) decay products, which are attached to aerosols, is accumulated on a quartz aerosol filter and assayed on-line by alpha-spectroscopy. The alpha-activity from the 212Pb daughters is determined by spectroscopy and corrected for. This monitor is suitable to measure 222Rn activities at hourly resolution down to 0.5 Bq m-3 with an uncertainty well below ±20%. The prototype of this monitor is run in Heidelberg on the roof of the Institute’s building about 20 m above ground. For this site, the atmospheric radioactive disequilibrium was determined between the 222Rn daughter 214Po and 222Rn, which has to be known to derive the atmospheric 222Rn activity with the static filter method. We derived a mean disequilibrium 214Po/222Rn = 0.704±0.081 for various meteorological conditions through parallel 222Rn gas measurements with a slow pulse ionisation chamber. At the Russian field site, continuous activity observations were performed from July 1998 until July 2000 with half a year interruption in summer/fall 1999. During intensive campaigns, a second monitor was installed at Fyodorovskoye at 15.6 m (July/August 1998), and at 1.8 m (July/August 1999 and October 1999) above ground. Pronounced diurnal cycles of the 222Rn daughter activity were observed at all sites, particularly during summer when the vertical mixing conditions in the atmospheric surface layer vary strongly between day and night. The lower envelope of the continuous measurements at Fyodorovskoye and at Heidelberg changes on synoptic time scales by a factor of 4 to 10 due to long-range transport changes between continental to more maritime situations. Generally, the 222Rn activity at 26.3 m height at Fyodorovskoye is lower by a factor of 2 to 3 compared to Heidelberg at 20 m above ground. This unexpected result is due to considerably lower 222Rn exhalation rates from the soils measured in the footprint of the Fyodorovskoye Forest tower compared to Heidelberg. With the inverted chamber technique 222Rn exhalation rates in the range of 3.3 to 7.9 Bq m-2 h-1 were determined at Fyodorovskoye for summer 1998 and autumn 1999 (wet conditions with water table depths between 5 and 70 cm). Only during the very dry summer in 1999 the mean 222Rn exhalation rate increased by about a factor of five. All measured exhalation rates at the Fyodorovskoye Forest are considerably smaller by a factor of 2-10 compared to what we observe in the vicinity of Heidelberg (ca. 50 to 60 Bq m-2 h-1) and generally in Western Europe

    Influence of Spring and Autumn Phenological Transitions on Forest Ecosystem Productivity

    Get PDF
    We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ÂżextraÂż day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.JRC.H.5-Land Resources Managemen

    Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

    Get PDF
    Climatic variables not only directly affect the interannual variability (IAV) in net ecosystem exchange of CO2 (NEE) but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C) dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP), which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE), the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research

    Quantifying the effect of forest age in annual net forest carbon balance

    Get PDF
    Forests dominate carbon (C) exchanges between the terrestrial biosphere and the atmosphere on land. In the long term, the net carbon flux between forests and the atmosphere has been significantly impacted by changes in forest cover area and structure due to ecological disturbances and management activities. Current empirical approaches for estimating net ecosystem productivity (NEP) rarely consider forest age as a predictor, which represents variation in physiological processes that can respond differently to environmental drivers, and regrowth following disturbance. Here, we conduct an observational synthesis to empirically determine to what extent climate, soil properties, nitrogen deposition, forest age and management influence the spatial and interannual variability of forest NEP across 126 forest eddy-covariance flux sites worldwide. The empirical models explained up to 62% and 71% of spatio-temporal and across-site variability of annual NEP, respectively. An investigation of model structures revealed that forest age was a dominant factor of NEP spatio-temporal variability in both space and time at the global scale as compared to abiotic factors, such as nutrient availability, soil characteristics and climate. These findings emphasize the importance of forest age in quantifying spatio-temporal variation in NEP using empirical approaches

    Relative importance of climatic variables, soil properties and plant traits to spatial variability in net CO2 exchange across global forests and grasslands

    Get PDF
    Compared to the well-known drivers of spatial variability in gross primary productivity (GPP), the relative importance of climatic variables, soil properties and plant traits to the spatial variability in net ecosystem exchange of CO2 between terrestrial ecosystem and atmosphere (NEE) is poorly understood. We used principal component regression to analyze data from 147 eddy flux sites to disentangle effects of climatic variables, soil properties and plant traits on the spatial variation in annual NEE and its components (GPP and ecosystem respiration (RE)) across global forests and grasslands. Our results showed that the largest unique contribution (proportion of variance only explained by one class of variables) to NEE variance came from climatic variables for forests (24%-30%) and soil properties for grasslands (41%-54%). Specifically, mean annual precipitation and potential evapotranspiration were the most important climatic variables driving forest NEE, whereas available soil water capacity, clay content and cation exchange capacity mainly influenced grassland NEE. Plant traits showed a small unique contribution to NEE in both forests and grasslands. However, leaf phosphorus content strongly interacted with soil total nitrogen density and clay content, and these combined factors represented a major contribution for grassland NEE. For GPP and RE, the majority of spatial variance was attributed to the common contribution of climate, soil and plant traits (50% - 62%, proportion of variance explained by more than one class of variables), rather than their unique contributions. Interestingly, those factors with only minor influences on GPP and RE variability (e.g., soil properties) have significant contributions to the spatial variability in NEE. Such emerging factors and the interactions between climatic variables, soil properties and plant traits are not well represented in current terrestrial biosphere models, which should be considered in future model improvement to accurately predict the spatial pattern of carbon cycling across forests and grasslands globally.Peer reviewe

    Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites:TL-LUE Parameterization and Validation

    Get PDF
    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (Δmsh) was 2.63 to 4.59 times that of sunlit leaves (Δmsu). Generally, the relationships of Δmsh and Δmsu with Δmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR

    Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC‐based T estimates show higher correlation to sap flow‐based T than EC‐based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high‐quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data‐based estimates of ecosystem T permitting a data‐driven perspective on the role of plants’ water use for global water and carbon cycling in a changing climate

    Ecosystem transpiration and evaporation : Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three dailyTestimates shows high correlation among methods (Rbetween .89 and .94), but a spread in magnitudes ofT/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-basedTestimates show higher correlation to sap flow-basedTthan EC-based ET. The partitioning methods show expected tendencies ofT/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows thatT/ET variability was 1.6 times higher across sites than across years. Spatial variability ofT/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall,TandT/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understandingTglobally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystemTpermitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.Peer reviewe
    • 

    corecore