170 research outputs found

    Productivity trends and collaboration patterns: A diachronic study in the eating disorders field

    Full text link
    [EN] Objective The present study seeks to extend previous bibliometric studies on eating disorders (EDs) by including a time-dependent analysis of the growth and evolution of multi-author collaborations and their correlation with ED publication trends from 1980 to 2014 (35 years). Methods Using standardized practices, we searched Web of Science (WoS) Core Collection (WoSCC) (indexes: Science Citation Index-Expanded [SCIE], & Social Science Citation Index [SSCI]) and Scopus (areas: Health Sciences, Life Sciences, & Social Sciences and Humanities) to identify a large sample of articles related to EDs. We then submitted our sample of articles to bibliometric and graph theory analyses to identify co-authorship and social network patterns. Results We present a large number of detailed findings, including a clear pattern of scientific growth measured as number of publications per five-year period or quinquennium (Q), a tremendous increase in the number of authors attracted by the ED subject, and a very high and steady growth in collaborative work. Conclusions We inferred that the noted publication growth was likely driven by the noted increase in the number of new authors per Q. Social network analyses suggested that collaborations within ED follow patters of interaction that are similar to well established and recognized disciplines, as indicated by the presence of a ¿giant cluster¿, high cluster density, and the replication of the ¿small world¿ phenomenon¿the principle that we are all linked by short chains of acquaintances.This work was performed with a subsidy from Universidad Catolica de Valencia "San Vicente Martir" to resarch group INDOTEI: Evaluacion de la Ciencia, for the years 2016-2017. This work is benefited from Spanish Government assistance through Government Delegation for the National Drugs Plan of the Ministry of Health, Social Services and Equality (project 2016/028); and National R+D+I (projects: CS02012-39632-C02-01 and CS02015-65594-C2-2-R) and 2015-Networks of Excellence Call (project CS02015-71867-REDT) of the Ministry of Economy and Competitiveness.Valderrama Zurian, JC.; Aguilar-Moya, R.; Cepeda-Benito, A.; Melero-Fuentes, D.; Navarro-Moreno, MÁ.; Gandía-Balaguer, A.; Aleixandre-Benavent, R. (2017). Productivity trends and collaboration patterns: A diachronic study in the eating disorders field. PLoS ONE. 12(8):1-17. https://doi.org/10.1371/journal.pone.0182760S117128McClelland, J., Bozhilova, N., Campbell, I., & Schmidt, U. (2013). A Systematic Review of the Effects of Neuromodulation on Eating and Body Weight: Evidence from Human and Animal Studies. European Eating Disorders Review, 21(6), 436-455. doi:10.1002/erv.2256Lancelot, C., Brooks-Gunn, J., Warren, M. P., & Newman, D. L. (1991). Comparison of DSM-III and DSM-III-R bulimia nervosa classifications for psychopathology and other eating behaviors. International Journal of Eating Disorders, 10(1), 57-66. doi:10.1002/1098-108x(199101)10:13.0.co;2-tWONDERLICH, S. A., CROSBY, R. D., JOINER, T., PETERSON, C. B., BARDONE-CONE, A., KLEIN, M., … VRSHEK, S. (2005). Personality subtyping and bulimia nervosa: psychopathological and genetic correlates. Psychological Medicine, 35(5), 649-657. doi:10.1017/s0033291704004234Spitzer, R. L., Devlin, M. J., Walsh, B. T., Hasin, D., Wing, R., Marcus, M. D., … Nonas, C. (1991). Binge eating disorder: To be or not to be in DSM-IV. International Journal of Eating Disorders, 10(6), 627-629. doi:10.1002/1098-108x(199111)10:63.0.co;2-4Wonderlich, S. A., Gordon, K. H., Mitchell, J. E., Crosby, R. D., & Engel, S. G. (2014). The Validity and Clinical Utility of Binge Eating Disorder. FOCUS, 12(4), 489-505. doi:10.1176/appi.focus.120412Theander, S. S. (2002). Literature on eating disorders during 40 Years: increasing number of papers, emergence of bulimia nervosa. European Eating Disorders Review, 10(6), 386-398. doi:10.1002/erv.495Clinton, D. (2010). Towards an ecology of eating disorders: Creating sustainability through the integration of scientific research and clinical practice. European Eating Disorders Review, 18(1), 1-9. doi:10.1002/erv.986Soh, N. L.-W., & Walter, G. (2013). Publications on cross-cultural aspects of eating disorders. Journal of Eating Disorders, 1(1). doi:10.1186/2050-2974-1-4Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827), 1036-1039. doi:10.1126/science.1136099Kumar, S. (2015). Co-authorship networks: a review of the literature. Aslib Journal of Information Management, 67(1), 55-73. doi:10.1108/ajim-09-2014-0116Barabási, A. ., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3-4), 590-614. doi:10.1016/s0378-4371(02)00736-7Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(Supplement 1), 5200-5205. doi:10.1073/pnas.0307545100Aleixandre-Benavent, R., & Alonso-Arroyo, A. (2011). Indicadores bibliométricos, patología del aparato respiratorio y reducción del consumo de tabaco. Revista de Patología Respiratoria, 14(1), 1-3. doi:10.1016/s1576-9895(11)70095-9Pino-Díaz, J., Jiménez-Contreras, E., Ruíz-Baños, R., & Bailón-Moreno, R. (2011). Evaluación de redes tecnocientíficas: la red española sobre Áreas Protegidas, según la Web of Science. Revista española de Documentación Científica, 34(3), 301-333. doi:10.3989/redc.2011.3.804Valderrama-Zurián, J.-C., Aguilar-Moya, R., Melero-Fuentes, D., & Aleixandre-Benavent, R. (2015). A systematic analysis of duplicate records in Scopus. Journal of Informetrics, 9(3), 570-576. doi:10.1016/j.joi.2015.05.002Guardiola-Wanden-Berghe, R., Sanz-Valero, J., & Wanden-Berghe, C. (2012). Medical subject headings versus American Psychological Association Index Terms: indexing eating disorders. Scientometrics, 94(1), 305-311. doi:10.1007/s11192-012-0866-7Soh, N., Walter, G., Touyz, S., Russell, J., Malhi, G. S., & Hunt, G. E. (2012). Food for thought: Comparison of citations received from articles appearing in specialized eating disorder journals versus general psychiatry journals. International Journal of Eating Disorders, 45(8), 990-994. doi:10.1002/eat.22036Theander, S. S. (2004). Trends in the literature on eating disorders over 36 years(1965-2000): terminology, interpretation and treatment. European Eating Disorders Review, 12(1), 4-17. doi:10.1002/erv.559Kawamura, M., Thomas, C. D. L., Tsurumoto, A., Sasahara, H., & Kawaguchi, Y. (2000). Lotka’s law and productivity index of authors in a scientific journal. Journal of Oral Science, 42(2), 75-78. doi:10.2334/josnusd.42.75Lawani SM. Quality, collaboration and citations in cancer research: A bibliometric study. PhD thesis. Florida State University, Tallahassee. 1980.Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE, 9(6), e98679. doi:10.1371/journal.pone.0098679Pike, K. M., & Dunne, P. E. (2015). The rise of eating disorders in Asia: a review. Journal of Eating Disorders, 3(1). doi:10.1186/s40337-015-0070-2El Ghoch, M., Soave, F., Calugi, S., & Dalle Grave, R. (2013). Eating Disorders, Physical Fitness and Sport Performance: A Systematic Review. Nutrients, 5(12), 5140-5160. doi:10.3390/nu5125140Jones, A. W. (2007). The distribution of forensic journals, reflections on authorship practices, peer-review and role of the impact factor. Forensic Science International, 165(2-3), 115-128. doi:10.1016/j.forsciint.2006.05.013Baker, T., Hatsukami, D., Lerman, C., O’Malley, S., Shields, A., & Fiore, M. (2003). Transdisciplinary science applied to the evaluation of treatments for tobacco use. Nicotine & Tobacco Research, 5(6), 89-99. doi:10.1080/14622200310001625564González-Alcaide, G., Melero-Fuentes, D., Aleixandre-Benavent, R., & Valderrama-Zurián, J.-C. (2013). Productivity and Collaboration in Scientific Publications on Criminology. Journal of Criminal Justice Education, 24(1), 15-37. doi:10.1080/10511253.2012.664153López-Muñoz, F., Alamo, C., Rubio, G., García-García, P., Martín-Agueda, B., & Cuenca, E. (2003). Bibliometric analysis of biomedical publications on SSRI during 1980-2000. Depression and Anxiety, 18(2), 95-103. doi:10.1002/da.10121González-Alcaide, G., Aleixandre-Benavent, R., Navarro-Molina, C., & Valderrama-Zurián, J. C. (2008). Coauthorship networks and institutional collaboration patterns in reproductive biology. Fertility and Sterility, 90(4), 941-956. doi:10.1016/j.fertnstert.2007.07.1378González-Alcaide, G., Park, J., Huamaní, C., Belinchón, I., & Ramos, J. M. (2015). Evolution of Cooperation Patterns in Psoriasis Research: Co-Authorship Network Analysis of Papers in Medline (1942–2013). PLOS ONE, 10(12), e0144837. doi:10.1371/journal.pone.0144837Bordons, M., & Ángeles Zulueta, M. (2002). La interdisciplinariedad en los grupos españoles de investigación en el área cardiovascular. Revista Española de Cardiología, 55(9), 900-912. doi:10.1016/s0300-8932(02)76728-6Chan, H. F., Önder, A. S., & Torgler, B. (2015). The first cut is the deepest: repeated interactions of coauthorship and academic productivity in Nobel laureate teams. Scientometrics, 106(2), 509-524. doi:10.1007/s11192-015-1796-yBordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135-144. doi:10.1016/j.joi.2014.12.001Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409. doi:10.1073/pnas.98.2.404Fatt, C. K., Ujum, E. A., & Ratnavelu, K. (2010). The structure of collaboration in the Journal of Finance. Scientometrics, 85(3), 849-860. doi:10.1007/s11192-010-0254-0Kretschmer, H. (2004). Author productivity and geodesic distance in bibliographic co-authorship networks, and visibility on the Web. Scientometrics, 60(3), 409-420. doi:10.1023/b:scie.0000034383.86665.22Yan, E., Ding, Y., & Zhu, Q. (2009). Mapping library and information science in China: a coauthorship network analysis. Scientometrics, 83(1), 115-131. doi:10.1007/s11192-009-0027-9Yin, L., Kretschmer, H., Hanneman, R. A., & Liu, Z. (2006). Connection and stratification in research collaboration: An analysis of the COLLNET network. Information Processing & Management, 42(6), 1599-1613. doi:10.1016/j.ipm.2006.03.021Lambiotte, R., & Panzarasa, P. (2009). Communities, knowledge creation, and information diffusion. Journal of Informetrics, 3(3), 180-190. doi:10.1016/j.joi.2009.03.007Leydesdorff, L. (2012). World shares of publications of the USA, EU-27, and China compared and predicted using the new Web of Science interface versus Scopus. El Profesional de la Informacion, 21(1), 43-49. doi:10.3145/epi.2012.ene.06Bartol, T., Budimir, G., Dekleva-Smrekar, D., Pusnik, M., & Juznic, P. (2013). Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics, 98(2), 1491-1504. doi:10.1007/s11192-013-1148-8López-Illescas, C., de Moya-Anegón, F., & Moed, H. F. (2008). Coverage and citation impact of oncological journals in the Web of Science and Scopus. Journal of Informetrics, 2(4), 304-316. doi:10.1016/j.joi.2008.08.001Warren, C. S., Gleaves, D. H., Cepeda-Benito, A., Fernandez, M. del C., & Rodriguez-Ruiz, S. (2005). Ethnicity as a protective factor against internalization of a thin ideal and body dissatisfaction. International Journal of Eating Disorders, 37(3), 241-249. doi:10.1002/eat.20102Prince, R., & Thebaud, E. F. (1983). Is Anorexia Nervosa a Culture-Bound Syndrome? Transcultural Psychiatric Research Review, 20(4), 299-302. doi:10.1177/136346158302000419Miller, M. N., & Pumariega, A. J. (2001). Culture and Eating Disorders: A Historical and Cross-Cultural Review. Psychiatry: Interpersonal and Biological Processes, 64(2), 93-110. doi:10.1521/psyc.64.2.93.1862

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Co-authorship Network Analysis: A Powerful Tool for Strategic Planning of Research, Development and Capacity Building Programs on Neglected Diseases

    Get PDF
    The selection and prioritization of research proposals is always a challenge, particularly when addressing neglected tropical diseases, as the scientific communities are relatively small, funding is usually limited and the disparity between the science and technology capacity of different countries and regions is enormous. When the Ministry of Health and the Ministry of Science and Technology of Brazil decided to launch an R&D program on neglected diseases for which at least 30% of the Program's resources were supposed to be invested in institutions and authors from the poorest regions of Brazil, it became clear to us that new strategies and approaches would be required. Social network analysis of co-authorship networks is one of the new approaches we are exploring to develop new tools to help policy-/decision-makers and academia jointly plan, implement, monitor and evaluate investments in this area. Publications retrieved from international databases provide the starting material. After standardization of names and addresses of authors and institutions with text mining tools, networks are assembled and visualized using social network analysis software. This study enabled the development of innovative criteria and parameters, allowing better strategic planning, smooth implementation and strong support and endorsement of the Program by key stakeholders

    Inhibition of Monkeypox virus replication by RNA interference

    Get PDF
    The Orthopoxvirus genus of Poxviridae family is comprised of several human pathogens, including cowpox (CPXV), Vaccinia (VACV), monkeypox (MPV) and Variola (VARV) viruses. Species of this virus genus cause human diseases with various severities and outcome ranging from mild conditions to death in fulminating cases. Currently, vaccination is the only protective measure against infection with these viruses and no licensed antiviral drug therapy is available. In this study, we investigated the potential of RNA interference pathway (RNAi) as a therapeutic approach for orthopox virus infections using MPV as a model. Based on genome-wide expression studies and bioinformatic analysis, we selected 12 viral genes and targeted them by small interference RNA (siRNA). Forty-eight siRNA constructs were developed and evaluated in vitro for their ability to inhibit viral replication. Two genes, each targeted with four different siRNA constructs in one pool, were limiting to viral replication. Seven siRNA constructs from these two pools, targeting either an essential gene for viral replication (A6R) or an important gene in viral entry (E8L), inhibited viral replication in cell culture by 65-95% with no apparent cytotoxicity. Further analysis with wild-type and recombinant MPV expressing green fluorescence protein demonstrated that one of these constructs, siA6-a, was the most potent and inhibited viral replication for up to 7 days at a concentration of 10 nM. These results emphasis the essential role of A6R gene in viral replication, and demonstrate the potential of RNAi as a therapeutic approach for developing oligonucleotide-based drug therapy for MPV and other orthopox viruses

    INFOGEST static in vitro simulation of gastrointestinal food digestion

    Get PDF
    peer-reviewedSupplementary information is available at http://dx.doi.org/10.1038/s41596-018-0119-1 or https://www.nature.com/articles/s41596-018-0119-1#Sec45.Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.COST action FA1005 INFOGEST (http://www.cost-infogest.eu/ ) is acknowledged for providing funding for travel, meetings and conferences (2011-2015). The French National Institute for Agricultural Research (INRA, www.inra.fr) is acknowledged for their continuous support of the INFOGEST network by organising and co-funding the International Conference on Food Digestion and workgroup meeting

    Man-biting Activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai (Diptera: Culicidae) in the Pacific Lowlands of Colombia

    Get PDF
    The daily man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai was determined in four ecologically distinct settlements of the Naya River, Department of Valle, Colombia. Differences were found among the settlements with respect to the mosquito species present, intradomiciliary and extradomiciliary biting activity and population densities

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health
    corecore