11 research outputs found

    Spatially resolved single photon detection with a quantum sensor array

    Get PDF
    We propose a method of resolving a spatially coherent signal, which contains on average just a single photon, against the background of local noise at the same frequency. The method is based on detecting the signal simultaneously in several points more than a wavelength apart through the entangling interaction of the incoming photon with the quantum metamaterial sensor array. The interaction produces the spatially correlated quantum state of the sensor array, characterised by a collective observable (e.g., total magnetic moment), which is read out using a quantum nondemolition measurement. Weshow that the effects of local noise (e.g., fluctuations affecting the elements of the array) are suppressed relative to the signal from the spatially coherent field of the incoming photon as ˜1/√N , where N is the number of array elements. The realisation of this approach in the microwave range would be especially useful and is within the reach of current experimental techniques

    Extension of the sum rule for the transition rates between multiplets to the multiphoton case

    Full text link
    The sum rule for the transition rates between the components of two multiplets, known for the one-photon transitions, is extended to the multiphoton transitions in hydrogen and hydrogen-like ions. As an example the transitions 3p-2p, 4p-3p and 4d-3d are considered. The numerical results are compared with previous calculations.Comment: 10 pages, 4 table

    Looking for magnetic monopoles at LHC with diphoton events

    Get PDF
    Magnetic monopoles have been a subject of interest since Dirac established the relation between the existence of monopoles and charge quantization. The intense experimental search carried thus far has not met with success. The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to discover these rare particles we propose here other ways to detect them. We study the observability of monopoles and monopolium, a monopole-antimonopole bound state, at the Large Hadron Collider in the γγ\gamma \gamma channel for monopole masses in the range 500-1000 GeV. We conclude that LHC is an ideal machine to discover monopoles with masses below 1 TeV at present running energies and with 5 fb−1^{-1} of integrated luminosity.Comment: This manuscript contains information appeared in Looking for magnetic monopoles at LHC, arXiv:1104.0218 [hep-ph] and Monopolium detection at the LHC.,arXiv:1107.3684 [hep-ph] by the same authors, rewritten for joint publication in The European Physica Journal Plus. 26 pages, 22 figure

    Monopolium production from photon fusion at the Large Hadron Collider

    Get PDF
    Magnetic monopoles have attracted the attention of physicists since the founding of the electromagnetic theory. Their search has been a constant endeavor which was intensified when Dirac established the relation between the existence of monopoles and charge quantization. However, these searches have been unsuccessful. We have recently proposed that monopolium, a monopole-antimonopole bound state, so strongly bound that it has a relatively small mass, could be easier to find and become an indirect but clear signature for the existence of magnetic monopoles. In here we extend our previous analysis for its production to two photon fusion at LHC energies

    Monopolium: the key to monopoles

    Get PDF
    Dirac showed that the existence of one magnetic pole in the universe could offer an explanation for the discrete nature of the electric charge. Magnetic poles appear naturally in most Grand Unified Theories. Their discovery would be of greatest importance for particle physics and cosmology. The intense experimental search carried thus far has not met with success. Moreover, if the monopoles are very massive their production is outside the range of present day facilities. A way out of this impasse would be if the monopoles bind to form monopolium, a monopole- antimonopole bound state, which is so strongly bound, that it has a relatively small mass. Under these circumstances it could be produced with present day facilities and the existence of monopoles could be indirectly proven. We study the feasibility of detecting monopolium in present and future accelerators

    Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques

    No full text
    Abstract In this work we present a suitable computational tool to deal with large matrices and solve systems of non-linear equations. This technique is applied to a very interesting problem: the detection and flux estimation of point sources in Cos- mic Microwave Background (CMB) maps, which allows a good determination of CMB primordial fluctuations and leads to a better knowledge of the chemistry at the early stages of the Universe. The method uses previous information about the statis- tical properties of the sources, so that this knowledge is incorporated in a Bayesian scheme. Simulations show that our approach allows the detection of more sources than previous non-Bayesian techniques, with a small computation timeThis work was financially supported by the Spanish Ministerio de Ciencia e Innovacion and by FEDER Projects (TEC2012-38142-C04, TIN2010-14971, TEC2009-13741 and CAPAP-H4 TIN2011-15734-E) Universitat Politecnica de Valencia through Programa de Apoyo a la Investigacion y Desarrollo (PAID-05-11) and Generalitat Valenciana through project PROMETEO/2009/013. We thank Diego Herranz for his help with the CMB simulations.Alonso, P.; ArgĂŒeso, F.; Cortina, R.; Ranilla, J.; Vidal MaciĂĄ, AM. (2013). Non-linear parallel solver for detecting point sources in CMB maps using Bayesian techniques. Journal of Mathematical Chemistry. 51(4):1153-1163. https://doi.org/10.1007/s10910-012-0078-711531163514P. Alonso, D. ArgĂŒelles, J. Ranilla, A.M. Vidal, The solution of Block-Toeplitz linear systems of equations in multicore computers. J. Supercomput. (2012). doi: 10.1007/s11227-012-0824-4Alonso P., ArgĂŒeso F., Cortina R., Ranilla J., Vidal A.M.: Detecting point sources in CMB maps using an eficient parallel algorithm. J. Math. Chem. 50, 410–420 (2012)ArgĂŒeso F., Salerno E., Herranz D., Sanz J.L., Kuruoglu E.E., Kayabol K.: A Bayesian technique for the detection of point sources in CMB maps. Mon. Not. Roy. Astron. Soc. 414, 410–417 (2011)Carvalho P., Rocha G., Hobson M.: A fast Bayesian approach to discrete object detection in astronomical images. PowellSnakes I. Mon. Not. Roy. Astron. Soc. 393, 681 (2009)Planck Collaboration, P.A.R. Ade et al. Planck early results I. The Planck mission. Astron. Astrophys. 536, A1 (2011)De Zotti G. et al.: Predictions for high-frequency radio surveys of extragalactic sources. Astron. Astrophys. 431, 893–903 (2005)Dubrovich V.K.: Blurring of spatial microwave fluctuations by molecular last scattering. Astron. Lett. J. Astron. Space Astrophys. 19, 53 (1993)Golub G.H., Van Loan C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)Herranz D., Vielva P.: Microwave backgound images. IEEE Signal Process. Mag. 27, 67–75 (2010)D. Herranz, F. ArgĂŒeso, P. Carvalho, Compact source detection in multichannel microwave surveys: from SZ clusters to polarized sources. Adv. Astron. (2012). doi: 10.1155/2012/410965Maoli R., Melchiorri F., Tosti D.: Molecules in the postrecombination universe and microwave background anisotropies. Astrophys. J. 425, 372 (1994)Nolta M.R. et al.: Five-year wilkinson microwave anisotropy probe (WMAP) observations: angular power spectrum. Astrophys. J. Suppl. 180, 296 (2009)Penzias A.A., Wilson R.W.: A measurement of excess antenna temperature at 4,080 Mc/s. Astrophys. J. 142, 419–421 (1965)Schleicher D.R.G. et al.: Effects of primordial chemistry on the cosmic microwave background. Astron. Astrophys. 490, 521 (2008)Smoot G. et al.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1–L5 (1992)Spergel D.N. et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)StructPack: a high performance PACKage for STRUCTred Matrices. http://www.inco2.upv.es/structpack.htmlWax M., Kailath T.: Efficient inversion of Toeplitz-block Toeplitz matrix. IEEE T. Acoust. Speech. 31, 5 (1983

    Cosmic microwave background and first molecules in the early universe

    No full text

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    Get PDF
    Contains fulltext : 126057.pdf (preprint version ) (Open Access
    corecore