25 research outputs found

    Multiplicity spectrum of muon bundles and primary CR composition in the range 1 – 10000 TeV

    Get PDF
    Multiplicity spectrum of muon bundles underground, with Eμ ≥ few × 100 GeV, is an effective tool for study of primary Cosmic Ray spectrum and composition in wide range of the primary energies. In this paper we study integral muon number distribution measured at the Baksan Underground Scintillation Telescope (BUST). The analyzed range of the number of muon tracks crossing BUST (1 - 170) approximately corresponds to the primary energy range 1 – 104 TeV. The analysis shows that non-power law primary spectra are preferable below the knee. Such a spectrum can be obtained as superposition of the basic power law primary spectrum and an additional component from nearby supernova remnant in the Galaxy

    Multiplicity spectrum of muon bundles and primary CR composition in the range 1 – 10000 TeV

    Get PDF
    Multiplicity spectrum of muon bundles underground, with Eμ ≥ few × 100 GeV, is an effective tool for study of primary Cosmic Ray spectrum and composition in wide range of the primary energies. In this paper we study integral muon number distribution measured at the Baksan Underground Scintillation Telescope (BUST). The analyzed range of the number of muon tracks crossing BUST (1 - 170) approximately corresponds to the primary energy range 1 – 104 TeV. The analysis shows that non-power law primary spectra are preferable below the knee. Such a spectrum can be obtained as superposition of the basic power law primary spectrum and an additional component from nearby supernova remnant in the Galaxy

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Experimental progress in positronium laser physics

    Get PDF

    Methods of measuring rheological properties of interfacial layers (Experimental methods of 2D rheology)

    Full text link

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Multiplicity spectrum of muon bundles and primary CR composition in the range 1 – 10000 TeV

    No full text
    Multiplicity spectrum of muon bundles underground, with Eμ ≥ few × 100 GeV, is an effective tool for study of primary Cosmic Ray spectrum and composition in wide range of the primary energies. In this paper we study integral muon number distribution measured at the Baksan Underground Scintillation Telescope (BUST). The analyzed range of the number of muon tracks crossing BUST (1 - 170) approximately corresponds to the primary energy range 1 – 104 TeV. The analysis shows that non-power law primary spectra are preferable below the knee. Such a spectrum can be obtained as superposition of the basic power law primary spectrum and an additional component from nearby supernova remnant in the Galaxy
    corecore