52 research outputs found

    Nutritional innovations in superior European sea bass (Dicentrarchus labrax) genotypes: implications on fish performance and feed utilization.

    Get PDF
    The sustainable development of the aquaculture industry relies on the use of alternative conventional and emergent raw materials that contributes to a circular economy and to reduce the dependency on fish meals and fish oils coming from oceanic fish populations. Additionally, the genetic selection of farmed fish that can display higher growth and feed utilization when fed alternative feeds, is pointed out to be a complementary valuable tool to facilitate the implementation of circular economy approaches. The main purpose of the present study was to determine the effectiveness of genetic selection for growth in European sea bass, in response to a challenge with an alternative diet that aimed to partially replaced fishmeal (FM) by poultry meal (PM) and totally replace fish oil (FO) by a blend of poultry oil (PO) with a novel microalgae oil. The two families of fish juveniles were obtained by in vitro fertilization of selected for a multi-trait including high growth (genetically selected, GS) or nonselected (wild type, WT) broodstocks and then were nutritionally challenged with a control diet that mirrored a standard commercial diet with fishmeal (20%) and fish oil (7%), or a Future diet that partially replaced the FM by PM and totally replaced the FO by a blend of rapeseed oil, PO, and a novel DHA rich-algal oil. From the second month of feeding until the end of the trial, European sea bass that was selected since for 7 generations performed better in terms of growth than the wild-type genotype, possibly related with an apparent favored feed and nutrient utilization. Furthermore, selection decreased the perivisceral fat and increased the nutritional value of flesh by increasing DHA (in g/ 100 g flesh) and ARA contents. In contrast, the dietary treatment showed little effect on fish growth performance, denoting the successful partial replacement of FM by PM and the total replacement of FO by a blend of poultry oil and an emergent microalgal oil. However, Future diet tended to reduce the ADCs of some amino acids, as well as showed an additive effect to genotype in increasing the n-3 PUFA of flesh. Altogether, our data demonstrate that multi-trait genetic selection of European sea bass improve fish plasticity to cope with the variations of ingredients in alternative feeds with low FM/FO

    Impact of non-adherence to radiotherapy on 1-year survival in cancer patients in Catalonia, Spain

    Get PDF
    This study aims to assess the effects of non-adherence to external beam radiation therapy in cancer patients receiving treatment with a curative. This retrospective cohort study collected health records data for all cancer patients treated with external beam radiotherapy with curative intent in 2016 in Catalonia, Spain. Adherence was defined as having received at least 90% of the total dose prescribed. A logistic regression model was used to assess factors related to non-adherence, and its association with one-year survival was evaluated using Cox regression. The final sample included 8721 patients (mean age 63.6 years): breast cancer was the most common tumour site (38.1%), followed by prostate and colon/rectum. Treatment interruptions prolonged the total duration of therapy in 70.7% of the patients, and 1.0% were non-adherent. Non-adherence was associated with advanced age, female gender, and some localization of primary tumour (head and neck, urinary bladder, and haematological cancers). The risk of death in non-adherent patients was higher than in adherent patients (hazard ratio [HR] 1.63, 95% confidence interval 0.97-2.74), after adjusting for the potential confounding effect of age, gender, tumour site and comorbidity. Non-adherence to radiotherapy, as measured by the received dose, is very low in our setting, and it may have an impact on one-year survival

    Sperm motility parameters and spermatozoa morphometric characterization in marine species: a study of swimmer and sessile species

    Full text link
    [EN] The biodiversity of marine ecosystems is diverse and a high number of species coexist side by side. However, despite the fact that most of these species share a common fertilization strategy, a high variability in terms of the size, shape, and motion of spermatozoa can be found. In this study, we have analyzed both the sperm motion parameters and the spermatozoa morphometric features of two swimmer (pufferfish and European eel) and two sessile (sea urchin and ascidian) marine species. The most important differences in the sperm motion parameters were registered in the swimming period. Sessile species sperm displayed notably higher values than swimmer species sperm. In addition, the sperm motilities and velocities of the swimmer species decreased sharply once the sperm was activated, whereas the sessile species were able to maintain their initial values for a long time. These results are linked directly to the species-specific lifestyles. Although sessile organisms, which show limited or no movement, need sperm with a capacity to swim for long distances to find the oocytes, swimmer organisms can move toward the female and release gametes near it, and therefore the spermatozoa does not need to swim for such a long time. At the same time, sperm morphology is related to sperm motion parameters, and in this study an in-depth morphometric analysis of ascidian, sea urchin, and pufferfish spermatozoa, using computer-assisted sperm analysis software, has been carried out for the first time. A huge variability in shapes, sizes, and structures of the studied species was found using electron microscopy. (C) 2014 Elsevier Inc. All rights reserved.This study was funded by the Spanish Ministry of Science and Innovation (MICINN; AGL2010-16009). Victor Gallego has a predoctoral grant (MICINN; BES-2009-020310) and has been granted a fellowship (EEBB-I-12-05858) of the Spanish Personnel Research Training Program to carry out this research in the Misaki Marine Biological Station (Miura, Japan).Gallego Albiach, V.; Pérez Igualada, LM.; Asturiano Nemesio, JF.; Yoshida, M. (2014). Sperm motility parameters and spermatozoa morphometric characterization in marine species: a study of swimmer and sessile species. Theriogenology. 82(5):668-676. https://doi.org/10.1016/j.theriogenology.2014.05.026S66867682

    Atlas of marine bony fish otoliths (Sagittae) of Southeastern - Southern Brazil Part I: Gadiformes (Macrouridae, Moridae, Bregmacerotidae, Phycidae and Merlucciidae); Part II: Perciformes (Carangidae, Sciaenidae, Scombridae and Serranidae)

    Full text link

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p
    corecore