2,222 research outputs found
Minimal SUGRA Model and Collider Signals
The SUSY signals in the dominant stau-neutralino coannihilation region at a
500(800) GeV linear collider are investigated. The region is consistent with
the WMAP measurement of the cold dark matter relic density as well as all other
current experimental bounds within the mSUGRA framework. The signals are
characterized by an existence of very low-energy tau leptons in the final state
due to small mass difference between stau_1 and chi_1 (5-15 GeV). We study the
accuracy of the mass difference measurement with a 1^deg active mask to reduce
a huge SM two-photon background.Comment: 4 pages, 3 figures, Talk presented at ICHEP04, Aug.16-22, Beijing,
China, Numerical typos in Table 5 and 6 are corrected, no changes in figures
and in other numerical result
Radiation Testing of Electronics for the CMS Endcap Muon System
The electronics used in the data readout and triggering system for the
Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC)
particle accelerator at CERN are exposed to high radiation levels. This
radiation can cause permanent damage to the electronic circuitry, as well as
temporary effects such as data corruption induced by Single Event Upsets. Once
the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will
have five times higher instantaneous luminosity than LHC, allowing for
detection of rare physics processes, new particles and interactions. Tests have
been performed to determine the effects of radiation on the electronic
components to be used for the Endcap Muon electronics project currently being
designed for installation in the CMS experiment in 2013. During these tests the
digital components on the test boards were operating with active data readout
while being irradiated with 55 MeV protons. In reactor tests, components were
exposed to 30 years equivalent levels of neutron radiation expected at the
HL-LHC. The highest total ionizing dose (TID) for the muon system is expected
at the inner-most portion of the CMS detector, with 8900 rad over ten years.
Our results show that Commercial Off-The-Shelf (COTS) components selected for
the new electronics will operate reliably in the CMS radiation environment
LHC / ILC / Cosmology Interplay
There is a strong and growing interplay between particle physics and
cosmology. In this talk, I discuss some aspects of this interplay concerning
dark matter candidates put forth by theories beyond the Standard Model. In
explaining the requirements for collider tests of such dark matter candidates,
I focus in particular on the case of the lightest neutralino in the MSSM.Comment: 7 pages, contribution to the proceedings of the IX Workshop on High
Energy Physics Phenomenology (WHEPP-9), 3-14 Jan 2006, Bhubaneswar, Indi
Radiation testing of electronics for the CMS endcap muon system
The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.Physic
Precise measurement of the W-boson mass with the CDF II detector
We have measured the W-boson mass MW using data corresponding to 2.2/fb of
integrated luminosity collected in proton-antiproton collisions at 1.96 TeV
with the CDF II detector at the Fermilab Tevatron collider. Samples consisting
of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement
MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most
precise measurement of the W-boson mass to date and significantly exceeds the
precision of all previous measurements combined
Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron
The combination of searches performed by the CDF and D0 collaborations at the
Fermilab Tevatron Collider for neutral Higgs bosons produced in association
with b quarks is reported. The data, corresponding to 2.6 fb-1 of integrated
luminosity at CDF and 5.2 fb-1 at D0, have been collected in final states
containing three or more b jets. Upper limits are set on the cross section
multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs
boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson.
Significant enhancements to the production of Higgs bosons can be found in
theories beyond the standard model, for example in supersymmetry. The results
are interpreted as upper limits in the parameter space of the minimal
supersymmetric standard model in a benchmark scenario favoring this decay mode.Comment: 10 pages, 2 figure
Search for the standard model Higgs boson decaying to a pair in events with no charged leptons and large missing transverse energy using the full CDF data set
We report on a search for the standard model Higgs boson produced in
association with a vector boson in the full data set of proton-antiproton
collisions at TeV recorded by the CDF II detector at the
Tevatron, corresponding to an integrated luminosity of 9.45 fb. We
consider events having no identified charged lepton, a transverse energy
imbalance, and two or three jets, of which at least one is consistent with
originating from the decay of a quark. We place 95% credibility level upper
limits on the production cross section times standard model branching fraction
for several mass hypotheses between 90 and . For a Higgs
boson mass of , the observed (expected) limit is 6.7
(3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let
Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set
We present a search for the standard model Higgs boson produced in
association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data
collected with the CDF II detector at the Tevatron corresponding to an
integrated luminosity of 9.45 fb-1. In events consistent with the decay of the
Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a
neutrino, we set 95% credibility level upper limits on the WH production cross
section times the H->bb branching ratio as a function of Higgs boson mass. At a
Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times
the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by
PRL
- …