2,356 research outputs found

    Texture based characterization of sub-skin features by specified laser speckle effects at λ=650nm region

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objective: The textural structure of “skin age” related sub-skin components enables us to identify and analyse their unique characteristics, thus making substantial progress towards establishing an accurate skin age model. Methods: This is achieved by a two stage process. First by the application of textural analysis using laser speckle imaging, which is sensitive to textural effects within the λ=650 nm spectral band region. In the second stage a Bayesian inference method is used to select attributes from which a predictive model is built. Results: This technique enables us to contrast different skin age models, such as the laser-speckle effect against the more widely used normal light (LED) imaging method, whereby it is shown that our laser speckle based technique yields better results. Conclusion: The method introduced here is non-invasive, low-cost and capable of operating in real-time; having the potential to compete against high-cost instrumentation such as confocal microscopy or similar imaging devices used for skin age identification purposes

    The 21st Century Paradigm in Supporting Sustainable Development

    Get PDF
    This book chapter was prepared with the theme "21st century paradigm in supporting sustainable development", with the aim of describing the efforts that have been made to support sustainable development from various fields, not only in the field of education. The material contained in this book chapter illustrates that literacy is very important to apply, so that students are able to face the challenges of a rapidly changing world that requires students to be able to solve every existing problem. In fact, it's not just literacy, but numeracy literacy is also one of the things that must be considered in the learning process. Considering the low level of scientific literacy, if not immediately addressed, it will have an impact on the low quality of human resources and will hinder the progress of science and technology in Indonesia. Literacy in schools is implemented through various learning components that must be designed or prepared by teachers. The application of scientific literacy in science learning should be carried out using scientific inquiry to foster the ability to think, work and behave scientifically and communicate it as an important aspect of life skills

    An improvement of skin aging assessment by non-invasive laser speckle effect: A comparative texture analysis

    Get PDF
    Skin aging is a complex biological process that is yet to be successfully modelled as it depends on various internal and external factors. This work therefore investigates novel low-cost skin aging assessment technique and equipment by using robust analysis of textural features unified with a laser-speckle imaging method, which is found to be quite capable of detecting multi-layer cellular textural changes exhibited by the biological skin aging process. This study and low-cost product seem to be the first of its kind, which is expected to bring great benefit to both healthcare and cosmetic sectors

    Nosocomial infections by diverse carbapenemase-producing Aeromonas hydrophila associated with combination of plumbing issues and heat waves

    Get PDF
    BackgroundAquatic opportunistic pathogen Aeromonas hydrophila, known to persist in low-nutrient chlorinated waters, can cause life-threatening infections. Two intensive care units experienced a cluster of Aeromonas infections following outdoor temperature spikes coinciding with recurrent plumbing issues, with fatalities due to severe underlying comorbidities co-occurring with extensively-drug resistant (XDR) Aeromonas.MethodsWe investigated this cluster using whole genome sequencing to assess genetic relatedness of isolates and identify antimicrobial resistance determinants. Three A. hydrophila were isolated from patients staying in or adjacent to rooms with plumbing issues during or immediately after periods of elevated outdoor temperatures. Sinks and faucets were swabbed for culture.ResultsAll A. hydrophila clinical isolates exhibited carbapenem resistance but were not genetically related. Diverse resistance determinants corresponding to extensively-drug resistant were found, including co-occurring KPC-3 and VIM-2, OXA-232, and chromosomal CphA-like carbapenemase genes, contributing to major treatment challenges. All 3 patients were treated with multiple antibiotic regimens to overcome various carbapenemase classes and expired due to underlying comorbidities. Environmental culture yielded no Aeromonas.ConclusionsWhile the investigation revealed no singular source of contamination, it supports a possible link between plumbing issues, elevated outdoor temperatures and incidence of nosocomial Aeromonas infections. The diversity of carbapenemase genes detected in these wastewater-derived Aeromonas warrants heightened infection prevention precautions during periods of plumbing problems especially with heat waves

    Effects of standard training in the use of closed-circuit televisions in visually impaired adults: design of a training protocol and a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reading problems are frequently reported by visually impaired persons. A closed-circuit television (CCTV) can be helpful to maintain reading ability, however, it is difficult to learn how to use this device. In the Netherlands, an evidence-based rehabilitation program in the use of CCTVs was lacking. Therefore, a standard training protocol needed to be developed and tested in a randomized controlled trial (RCT) to provide an evidence-based training program in the use of this device.</p> <p>Methods/Design</p> <p>To develop a standard training program, information was collected by studying literature, observing training in the use of CCTVs, discussing the content of the training program with professionals and organizing focus and discussion groups. The effectiveness of the program was evaluated in an RCT, to obtain an evidence-based training program. Dutch patients (n = 122) were randomized into a treatment group: normal instructions from the supplier combined with training in the use of CCTVs, or into a control group: instructions from the supplier only. The effect of the training program was evaluated in terms of: change in reading ability (reading speed and reading comprehension), patients' skills to operate the CCTV, perceived (vision-related) quality of life and tasks performed in daily living.</p> <p>Discussion</p> <p>The development of the CCTV training protocol and the design of the RCT in the present study may serve as an example to obtain an evidence-based training program. The training program was adjusted to the needs and learning abilities of individual patients, however, for scientific reasons it might have been preferable to standardize the protocol further, in order to gain more comparable results.</p> <p>Trial registration</p> <p><url>http://www.trialregister.nl</url>, identifier: NTR1031</p

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Calibration of the CMS hadron calorimeters using proton-proton collision data at √s = 13 TeV

    Get PDF
    Methods are presented for calibrating the hadron calorimeter system of the CMS detector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities |η| < 3 and are positioned inside the solenoidal magnet. An outer calorimeter, outside the magnet coil, covers |η| < 1.26, and a steel and quartz-fiber Cherenkov forward calorimeter extends the coverage to |η| < 5.19. The initial calibration of the calorimeters was based on results from test beams, augmented with the use of radioactive sources and lasers. The calibration was improved substantially using proton-proton collision data collected at √s = 7, 8, and 13 TeV, as well as cosmic ray muon data collected during the periods when the LHC beams were not present. The present calibration is performed using the 13 TeV data collected during 2016 corresponding to an integrated luminosity of 35.9 fb⁻¹. The intercalibration of channels exploits the approximate uniformity of energy collection over the azimuthal angle. The absolute energy scale of the central and endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic portion of the forward calorimeters is set using Z→ ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy

    Analysis of the physical aspects of quality of life of kidney recipients

    Get PDF
    OBJECTIVE To identify the main factors of the physical domain modified after kidney transplantation and analyze the influence of those aspects in the perception of Overall quality of life (QOL). METHOD Longitudinal study, conducted with 63 chronic kidney patients, evaluated before and after kidney transplant, using the quality of life scale proposed by the World Health Organization. RESULTS We observed significant improvement in the physical aspects of QOL after kidney transplantation. Significant correlations were observed between physical aspects and the Overall QOL. CONCLUSION The kidney transplant generated improvement in all physical aspects of QOL. The factors that showed stronger correlation with the Overall QOL before the transplant were the capacity to work and pain. After the transplant, the perception of need for treatment was the factor that showed stronger correlation with the Overall QOL

    Measurement of the Bs0 = μ+μ- decay properties and search for the B0 → μ+μ- decay in proton-proton collisions at √s=13 TeV

    Get PDF
    Measurements are presented of the B0s & RARR; & mu;+& mu;- branching fraction and effective lifetime, as well as results of a search for the B0 & RARR; & mu;+& mu;- decay in proton-proton collisions at & RADIC;s =13 TeV at the LHC. The analysis is based on data collected with the CMS detector in 2016-2018 corresponding to an integrated luminosity of 140 fb-1. The branching fraction of the B0s & RARR; & mu;+& mu;- decay and the effective B0s meson lifetime are the most precise single measurements to date. No evidence for the B0 & RARR; & mu;+& mu;- decay has been found. All results are found to be consistent with the standard model predictions and previous measurements. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    A portrait of the Higgs boson by the CMS experiment ten years after the discovery

    Get PDF
    In July 2012, the ATLAS and CMS collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 gigaelectronvolts. Ten years later, and with the data corresponding to the production of a 30-times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin–parity quantum numbers, determined its mass and measured its production cross-sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross-section for the production of a pair of Higgs bosons, on the basis of data from proton–proton collisions at a centre-of-mass energy of 13 teraelectronvolts. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next 15 years, will help deepen our understanding of this crucial sector
    corecore