9 research outputs found

    +A 5680-year tree-ring temperature record for southern South America

    Get PDF
    It is widely documented that the Earth’s surface temperatures have increased in recent decades. However, temperature increment patterns are not uniform around the globe, showing different or even contrasting trends. Here we present a mean maximum summer temperature record, based on tree-ring widths, over the past 5682 years (3672BC e 2009AD) for southern South America (SSA), covering from mid-Holocene to the present. This is the longest such record for the Southern Hemisphere (SH), and expands available annual proxy climate records for this region in more than 2060 years. Our record explains 49% of the temperature variation, and documents two major warm periods between 3140 e2800BC and 70BC e 150AD, which coincide with the lack of evidence of glacier advances in SSA. Recent decades in the reconstruction (1959e2009) show a warming trend that is not exceptional in the context of the last five millennia. The long-term relationship between our temperature reconstruction and a reconstructed total solar irradiance record, with coinciding cycles at 293, 372, 432e434, 512 and 746 years, indicate a persistent influence of solar forcing on centennial climate variability in SSA. At interannual to interdecadal scales, reconstructed temperature is mainly related to the internal climate variability of the Pacific Ocean, including El Nino Southern Oscillation (ENSO) and longer oscillations. Our ~ study reveals the need to characterize regional-scale climate variability and its drivers, which in the context of global-scale processes such as anthropogenic warming, interact to modulate local climate affecting humans and ecosystems.Fil: Lara, Antonio. Center for Climate and Resilience Research; Chile. Universidad Austral de Chile; Chile. FundaciĂłn Centro de los Bosques Nativos; ChileFil: Villalba, Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Urrutia Jalabert, RocĂ­o. Center for Climate and Resilience Research; Chile. Instituto Forestal; Chile. Universidad Austral de Chile; ChileFil: GonzĂĄlez Reyes, Álvaro. Center for Climate and Resilience Research; Chile. Universidad Austral de Chile; Chile. Universidad Mayor; ChileFil: Aravena, Juan Carlos. Universidad de Magallanes; ChileFil: Luckman, Brian Henry. Western University; CanadĂĄFil: Cuq, Emilio. Universidad Austral de Chile; ChileFil: RodrĂ­guez, Carmen Gloria. Universidad Austral de Chile; ChileFil: Wolodarsky Franke, Alexia. Cooperativa Calahuala; Chil

    The Oldest, Slowest Rainforests in the World? Massive Biomass and Slow Carbon Dynamics of Fitzroya cupressoides Temperate Forests in Southern Chile

    No full text
    ArtĂ­culo de publicaciĂłn ISIOld-growth temperate rainforests are, per unit area, the largest and most long-lived stores of carbon in the terrestrial biosphere, but their carbon dynamics have rarely been described. The endangered Fitzroya cupressoides forests of southern South America include stands that are probably the oldest dense forest stands in the world, with long-lived trees and high standing biomass. We assess and compare aboveground biomass, and provide the first estimates of net primary productivity (NPP), carbon allocation and mean wood residence time in medium-age stands in the Alerce Costero National Park (AC) in the Coastal Range and in old-growth forests in the Alerce Andino National Park (AA) in the Andean Cordillera. Aboveground live biomass was 113-114 Mg C ha(-1) and 448-517 Mg C ha(-1) in AC and AA, respectively. Aboveground productivity was 3.35-3.36 Mg C ha(-1) year(-1) in AC and 2.22-2.54 Mg C ha(-1) year(-1) in AA, values generally lower than others reported for temperate wet forests worldwide, mainly due to the low woody growth of Fitzroya. NPP was 4.21-4.24 and 3.78-4.10 Mg C ha(-1) year(-1) in AC and AA, respectively. Estimated mean wood residence time was a minimum of 539-640 years for the whole forest in the Andes and 1368-1393 years for only Fitzroya in this site. Our biomass estimates for the Andes place these ecosystems among the most massive forests in the world. Differences in biomass production between sites seem mostly apparent as differences in allocation rather than productivity. Residence time estimates for Fitzroya are the highest reported for any species and carbon dynamics in these forests are the slowest reported for wet forests worldwide. Although primary productivity is low in Fitzroya forests, they probably act as ongoing biomass carbon sinks on long-term timescales due to their low mortality rates and exceptionally long residence times that allow biomass to be accumulated for millennia.FONDECYT 1130410 Center for Climate and Resilience Research (CR)2 - CONICYT/FONDAP 1511000

    Chile’s road plans threaten ancient forests

    No full text

    Climate variability and forest fires in central and south-central Chile

    No full text
    This paper evaluates the relationship between fire occurrence (number and burned area) and climate variability (precipitation and maximum temperatures) across central and south-central Chile (32 degrees-43 degrees S) during recent decades (1976-2013). This region sustains the largest proportion of the Chilean population, contains ecologically important remnants of endemic ecosystems, the largest extension of forest exotic plantations, and concentrates most of the fire activity in the country. Fire activity in central Chile was mainly associated with above-average precipitation during winter of the previous year and with dry conditions during spring to summer. The later association was particularly strong in the southern, wetter part of the study region. Maximum temperature had a positive significant relationship with burned area across the study region, with stronger correlations toward the south. Fires in central Chile were significantly related to El Nino-Southern Oscillation, through rainfall anomalies during the year previous to the fire season. The Antarctic Oscillation during winter through summer was positively related to fires across the study area due to drier/warmer conditions associated with the positive polarity of this oscillation. Climate change projections for the region reveal an all-season decrease in precipitation and increases in temperature, that may likely result in an increment of the occurrence and the area affected by fires, as it has been observed during a multi-year drought afflicting central Chile since 2010.Fondecyt 3160258 CONICYT/FONDAP/15110009 Seventh Framework Programme of the European Union (FP7) 24388

    Low Growth Sensitivity and Fast Replenishment of Non-structural Carbohydrates in a Long-Lived Endangered Conifer After Drought

    No full text
    International audienceThere is an ongoing debate on whether a drought induced carbohydrate limitation (source limitation) or a direct effect of water shortage (sink limitation) limit growth under drought. In this study, we investigated the effects of the two driest summers recorded in southern Chile in the last seven decades, on the growth and non-structural carbohydrates (NSC) concentrations of the slow-growing conifer Fitzroya cupressoides. Specifically, we studied the seasonal variation of NSC in saplings and adults one and two years after the occurrence of a 2 year-summer drought at two sites of contrasting precipitation and productivity (mesic-productive vs. rainy-less productive). We also evaluated radial growth before, during and after the drought, and predicted that drought could have reduced growth. If drought caused C source limitation, we expected that NSCs will be lower during the first than the second year after drought. Conversely, similar NSC concentrations between years or higher NSC concentrations in the first year would be supportive of sink limitation. Also, due to the lower biomass of saplings compared with adults, we expected that saplings should experience stronger seasonal NSC remobilization than adults. We confirmed this last expectation. Moreover, we found no significant growth reduction during drought in the rainy site and a slightly significant growth reduction at the mesic site for both saplings and adults. Across organs and in both sites and age classes, NSC, starch, and sugar concentrations were generally higher in the first than in the second year following drought, while NSC seasonal remobilization was generally lower. Higher NSC concentrations along with lower seasonal NSC remobilization during the first post-drought year are supportive of sink limitation. However, as these results were found at both sites while growth decreased slightly and just at the mesic site, limited growth only is unlikely to have caused NSC accumulation. Rather, these results suggest that the post-drought dynamics of carbohydrate storage are partly decoupled from the growth dynamics, and that the rebuild of C reserves after drought may be a priority in this species

    Warming and Drought Weaken the Carbon Sink Capacity of an Endangered Paleoendemic Temperate Rainforest in South America

    No full text
    Forests cover around 25%-30% of the Earth's surface (WRI, 2001) and are thus central to the global carbon (C) cycle and mitigation of climate change (Pan et al., 2011). Major efforts for quantifying and monitoring forest-climate interactions have been dedicated across more than ∌900 sites of flux towers and chamber systems around the world (FLUXNET, 2021). These monitoring sites are organized in regional (Novick et al., 2018; Y

    The global spectrum of plant form and function: enhanced species-level trait dataset.

    Get PDF
    Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date
    corecore