344 research outputs found

    Quick actuating closure and handling system

    Get PDF
    A quick activating closure and handling system, which utilizes conical sections for locking, was developed to allow quick access to the combustor internal components of the 8 ft High Temperature Tunnel. These critical components include the existing methane spraybar, a transpiration cooled nozzle and the new liquid oxygen (LOX) injection system housed within the combustor. A substantial cost savings will be realized once the mechanism is installed since it will substantially reduce the access time and increase the time available for conducting wind tunnel tests. A need exists for more frequent inspections when the wind tunnel operates at the more severe conditions generated by using LOX in the combustor. A loads analysis and a structural (finite element) analysis were conducted to verify that the new closure system is compatible with the existing pressure shell. In addition, strain gages were placed on the pressure vessel to verify how the pressure shell reacts to transient pressure loads. A scale model of the new closure system was built to verify the operation of the conical sections in the locking mechanisms

    The bright optical/NIR afterglow of the faint GRB 080710 - Evidence for a jet viewed off axis

    Get PDF
    We investigate the optical/near-infrared light curve of the afterglow of GRB 080710 in the context of rising afterglows. Optical and near-infrared photometry was performed using the seven channel imager GROND and the Tautenburg Schmidt telescope. X-ray data were provided by the X-ray Telescope onboard the Swift satellite. The optical/NIR light curve of the afterglow of GRB 080710 is dominated by an initial increase in brightness, which smoothly turns over into a shallow power law decay. The initially rising achromatic light curve of the afterglow of GRB 080710 can be accounted for with a model of a burst viewed off-axis or a single jet in its pre deceleration phase and in an on-axis geometry. An unified picture of the afterglow light curve and prompt emission properties can be obtained with an off-axis geometry, suggesting that late and shallow rising optical light curves of GRB afterglows might be produced by geometric effects.Comment: 9 pages, 4 figures, accepted by A and

    The late-time afterglow of the extremely energetic short burst GRB 090510 revisited

    Get PDF
    The discovery of the short GRB 090510 has raised considerable attention mainly because it had a bright optical afterglow and it is among the most energetic events detected so far within the entire GRB population. The afterglow was observed with swift/UVOT and swift/XRT and evidence of a jet break around 1.5 ks after the burst has been reported in the literature, implying that after this break the optical and X-ray light curve should fade with the same decay slope. As noted by several authors, the post-break decay slope seen in the UVOT data is much shallower than the steep decay in the X-ray band, pointing to an excess of optical flux at late times. We reduced and analyzed new afterglow light-curve data obtained with the multichannel imager GROND. Based on the densely sampled data set obtained with GROND, we find that the optical afterglow of GRB 090510 did indeed enter a steep decay phase starting around 22 ks after the burst. During this time the GROND optical light curve is achromatic, and its slope is identical to the slope of the X-ray data. In combination with the UVOT data this implies that a second break must have occurred in the optical light curve around 22 ks post burst, which, however, has no obvious counterpart in the X-ray band, contradicting the interpretation that this could be another jet break. The GROND data provide the missing piece of evidence that the optical afterglow of GRB 090510 did follow a post-jet break evolution at late times.Comment: submitted to Astronomy & Astrophysics, accepted for publication on Dec 24, 201

    Evidence for Supernova-Synthesised Dust from the Rising Afterglow of GRB 071025 at z~5

    Get PDF
    We present observations and analysis of the broadband afterglow of Swift GRB 071025. Using optical and infrared (RIYJHK) photometry, we derive a photometric redshift of 4.4 < z < 5.2; at this redshift our simultaneous multicolour observations begin at ~30 s after the GRB trigger in the host frame and during the initial rising phase of the afterglow. We associate the light curve peak at 580 s in the observer frame with the formation of the forward shock, giving an estimate of the initial Lorentz factor Gamma_0 ~ 200. The red spectral energy distribution (even in regions not affected by the Lyman-alpha break) provides secure evidence of a large dust column. However, the inferred extinction curve shows a prominent flat component between 2000-3000 Angstroms in the rest-frame, inconsistent with any locally observed template but well-fit by models of dust formed by supernovae. Time-dependent fits to the extinction profile reveal no evidence of dust destruction and limit the decrease in the extinction column to Delta A_3000 < 0.54 mag after t = 50 s in the rest frame. Our observations provide evidence of a transition in dust properties at z~5, in agreement with studies of high-z quasars, and suggest that SN-formed dust continues to dominate the opacity of typical galaxies at this redshift.Comment: Resubmitted to MNRAS following referee report. Contains additional figure and some extra analysis/discussio

    Super-solar Metal Abundances in Two Galaxies at z ~ 3.57 revealed by the GRB 090323 Afterglow Spectrum

    Get PDF
    We report on the surprisingly high metallicity measured in two absorption systems at high redshift, detected in the Very Large Telescope spectrum of the afterglow of the gamma-ray burst GRB090323. The two systems, at redshift z =3.5673 and z =3.5774 (separation ∆v ≈ 660 km s−1), are dominated by the neutral gas in the interstellar medium of the parent galaxies. From the singly ionized zinc and sulfur, we estimate oversolar metallicities of [Zn/H] = +0.29± 0.10 and [S/H] = +0.67± 0.34, in the blue and red absorber, respectively. These are the highest metallicities ever measured in galaxies at z\u3e 3. We propose that the two systems trace two galaxies in the process of merging, whose star formation and metallicity are heightened by the interaction. This enhanced star formation might also have triggered the birth of the GRB progenitor. As typically seen in star-forming galaxies, the fine-structure absorption Siii∗ is detected, both in G0 and G1. From the rest-frame UV emission in the GRB location, we derive arelatively high, not corrected for dust extinction, star-formation rate SFR ≈ 6M yr−1. These properties suggest a possible connection between some high-redshift GRB host galaxies and high-z massive sub-millimeter galaxies, which are characterized by disturbed morphologies and high metallicities. Our result provides additional evidence that the dispersion in the chemical enrichment of the Universe at high redshift is substantial, with the existence of very metal rich galaxies less than two billion years after the Big Bang

    ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS

    Get PDF
    We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as "dark." Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z ≾ 4 (110709B) and z ≈ 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A_V^(host) ≳ 5.3 mag and GRB 111215A requires A_V^(host) ≳ 8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N H, int ≳ 10^(22) cm^(–2) (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A_V -N_H relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E_γ + E_K ≈ (7-9) × 10^(51) erg (z = 2) expanding into a wind medium with a high density, Ṁ ≈ (6-20) x 10^(-5) M_☉ yr^(–1) (n ≈ 100-350 cm^(–3) at ≈ 10^(17) cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors

    A Deep Search for Host Galaxies of GRBs with no Detected Optical Afterglow

    Get PDF
    Context. Gamma-ray bursts (GRBs) can provide information about star formation at high redshifts. Even in the absence of a bright optical/near-infrared/radio afterglow, the high detection rate of X-ray afterglows by Swift/XRT and its localization precision of 2–3 arcsec facilitates the identification and the study of GRB host galaxies. Aims. We focus on the search for the host galaxies of 17 bursts with arcsec-sized XRT error circles but no detected long-wavelength afterglow, in spite of their deep and rapid follow-up observations. Three of these events can also be classified as truly dark bursts, i.e., the observed upper limit on the optical flux of the afterglow was less than expected based on the measured X-ray flux. Our goals are to identify the GRB host galaxy candidates and characterize their phenomenological parameters. Methods. Our study is based on deep RC and Ks-band observations performed with FORS1, FORS2, VIMOS, ISAAC, and HAWK-I at the ESO/VLT, partly supported by observations with the seven-channel imager GROND at the 2.2-m telescope on La Silla, and supplemented by observations with NEWFIRM at the 4-m telescope on Kitt Peak. To be conservative, we searched for host galaxy candidates within an area of twice the radius of each associated 90% c.l. Swift/XRT error circle. Results. For 15 of the 17 bursts, we find at least one galaxy within the searching area, and in the remaining two cases only a deep upper limit to RC and Ks can be provided. In seven cases, we discover extremely red objects in the error circles, at least four of which might be dust-enshrouded galaxies. The most remarkable case is the host of GRB 080207, which has a color of (RC −Ks)AB ∼4.7 mag, and is one of the reddest galaxies ever associated with a GRB. As a by-product of our study we identify the optical afterglow of GRB 070517. Conclusions. Only a minority of optically dim afterglows are due to Lyman dropout ( \u3c 1/3). Extinction by dust in the host galaxies might explain all other events. Thereby, a seemingly non-negligible fraction of these hosts are globally dust-enshrouded, extremely red galaxies. This suggests that at least a fraction of GRB afterglows trace a subpopulation of massive starburst galaxies, which are markedly different from the main body of the GRB host galaxy population, namely the blue, subluminous, compact galaxies

    A photometric redshift of z=1.80.3+0.4z=1.8^{+0.4}_{-0.3} for the \agile GRB 080514B

    Get PDF
    Aims: The AGILE gamma-ray burst GRB 080514B is the first burst with detected emission above 30 MeV and an optical afterglow. However, no spectroscopic redshift for this burst is known. Methods: We compiled ground-based photometric optical/NIR and millimeter data from several observatories, including the multi-channel imager GROND, as well as ultraviolet \swift UVOT and X-ray XRT observations. The spectral energy distribution of the optical/NIR afterglow shows a sharp drop in the \swift UVOT UV filters that can be utilized for the estimation of a redshift. Results: Fitting the SED from the \swift UVOT uvw2uvw2 band to the HH band, we estimate a photometric redshift of z=1.80.3+0.4z=1.8^{+0.4}_{-0.3}, consistent with the pseudo redshift reported by Pelangeon & Atteia (2008) based on the gamma-ray data. Conclusions: The afterglow properties of GRB 080514B do not differ from those exhibited by the global sample of long bursts, supporting the view that afterglow properties are basically independent of prompt emission properties.Comment: submitted to A&A letter

    GRB 071028B, a burst behind large amounts of dust in an unabsorbed galaxy

    Get PDF
    We report on the discovery and properties of the fading afterglow and underlying host galaxy of GRB 071028B, thereby facilitating a detailed comparison between these two. Observations were performed with the Gamma-ray Burst Optical and Near-infrared Detector at the 2.2 m telescope on the La Silla Paranal Observatory in Chile. We conducted five observations from 1.9 d to 227.2 d after the trigger and obtained deep images in the g'r'i'z' and JHKs bands. Based on accurate seven-channel photometry covering the optical to near-infrared wavelength range, we derive a photometric redshift of z = 0.94 +0.05 -0.10 for the unabsorbed host galaxy of GRB 071028B. In contrast, we show that the afterglow with an intrinsic extinction of AV(SB) = (0.70 +/- 0.11) mag is moderately absorbed and requires a relatively flat extinction curve. According to the reported Swift/BAT observations, the energetics yield an isotropic energy release of E(gamma,iso.,rest) = (1.4 +2.4 -0.7) x 10^51 erg.Comment: 8 pages, 5 figures, accepted for publication in A&

    Optical and near-infrared follow-up observations of four Fermi/LAT GRBs : Redshifts, afterglows, energetics and host galaxies

    Get PDF
    Fermi can measure the spectral properties of gamma-ray bursts over a very large energy range and is opening a new window on the prompt emission of these energetic events. Localizations by the instruments on Fermi in combination with follow-up by Swift provide accurate positions for observations at longer wavelengths leading to the determination of redshifts, the true energy budget, host galaxy properties and facilitate comparison with pre-Fermi bursts. Multi-wavelength follow-up observations were performed on the afterglows of four bursts with high energy emission detected by Fermi/LAT : GRB090323, GRB090328, GRB090510 and GRB090902B. They were obtained in the optical/near-infrared bands with GROND mounted at the MPG/ESO 2.2m telescope and additionally of GRB090323 in the optical with the 2 m telescope in Tautenburg, Germany. Three of the events are classified as long bursts while GRB090510 is a well localized short GRB with GeV emission. In addition, host galaxies were detected for three of the four bursts. Spectroscopic follow-up was initiated with the VLT for GRB090328 and GRB090510. The afterglow observations in 7 bands are presented for all bursts and their host galaxies are investigated. Knowledge of the distance and the local dust extinction enables comparison of the afterglows of LAT-detected GRBs with the general sample. The spectroscopic redshifts of GRB090328 and GRB090510 were determined to be z=0.7354+/-0.0003 and z=0.903 +/- 0.001 and dust corrected star-formation rates of 4.8 Mdot yr^-1 and 0.60 M_dot yr^-1 were derived for their host galaxies, respectively. The afterglows of long bursts exhibit power-law decay indices alpha from less than 1 to ~2.3 and spectral indices (beta) values from 0.65 to ~1.2 which are fairly standard for GRB afterglows. Constraints are placed on the jet half opening angles of less than 2.1 deg to greater than 6.4 deg which allows limits to be placed on the beaming corrected energies. These range from less than 5x10^50 erg to the one of the highest values ever recorded, greater than 2.2x10^52 erg for GRB090902B, and are not consistent with a standard candle. The extremely energetic long Fermi bursts have optical afterglows which lie in the top half of the brightness distribution of all optical afterglows detected in the Swift era or even in the top 5% if incompleteness is considered. The properties of the host galaxies of these LAT detected bursts in terms of extinction, star formation rates and masses do not appear to differ from previous samples.Comment: Accepted for publication in Astronomy and Astrophysics. 16 pages, 14 figures
    corecore