268 research outputs found

    Effects of a mindfulness based childbirth and parenting program on pregnant women's perceived stress and risk of perinatal depression-Results from a randomized controlled trial

    Get PDF
    The aim of this study was to test the efficacy of a Mindfulness-Based Childbirth and Parenting Program (MBCP) in reducing pregnant women's perceived stress and preventing perinatal depression compared to an active control condition.; First time pregnant women (n = 197) at risk of perinatal depression were randomized to MBCP or an active control treatment, which consisted of a Lamaze childbirth class. At baseline and post-intervention, participants filled out questionnaires on perceived stress, depressive symptoms, positive states of mind, and five facets of mindfulness.; Compared to the active control treatment, MBCP significantly reduced perceived stress (p = 0.038, d = 0.30) and depressive symptoms (p = 0.004, d = 0.42), and increased positive states of mind (p = 0.005, d = 0.41) and self-reported mindfulness (p = 0.039, d = 0.30). Moreover, change in mindfulness possibly mediated the treatment effects of MBCP on stress, depression symptoms, and positive states of mind. The subscales "non-reactivity to inner experience" and "non-judging of experience" seemed to have the strongest mediating effects.; The outcomes were self-report questionnaires, the participants were not blinded to treatment condition and the condition was confounded by number of sessions.; Our results suggest that MBCP is more effective in decreasing perceived stress and risk of perinatal depression compared to a Lamaze childbirth class. The results also contribute to our understanding of the underlying psychological mechanisms through which the reduction of stress and depression symptoms may operate. Thus, this study increases our knowledge about efficient intervention strategies to prevent perinatal depression and promote mental wellbeing among pregnant women

    Spinophilin participates in information transfer at immunological synapses

    Get PDF
    The adaptive immune response is initiated by the presentation of peptides bound to major histocompatibility complex molecules on dendritic cells (DCs) to antigen-specific T lymphocytes at a junction termed the immunological synapse. Although much attention has been paid to cytoplasmic events on the T cell side of the synapse, little is known concerning events on the DC side. We have sought signal transduction components of the neuronal synapse that were also expressed by DCs. One such protein is spinophilin, a scaffolding protein of neuronal dendritic spines that regulates synaptic transmission. In inactive, immature DCs, spinophilin is located throughout the cytoplasm but redistributes to the plasma membrane upon stimulus-induced maturation. In DCs interacting with T cells, spinophilin is polarized dynamically to contact sites in an antigen-dependent manner. It is also required for optimal T cell activation because DCs derived from mice lacking spinophilin exhibit defects in antigen presentation both in vitro and in vivo. Thus, spinophilin may play analogous roles in information transfer at both neuronal and immunological synapses

    Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation

    Get PDF
    The aim of this study was to investigate whether maternal adversities and cortisol levels during pregnancy predict cord blood DNA methylation of the oxytocin receptor (OXTR). We collected cord blood of 39 babies born to mothers participating in a cross-sectional study (N = 100) conducted in Basel, Switzerland (2007-10). Mothers completed the Inventory of Life Events (second trimester: T2), the Edinburgh Postnatal Depression Scale (EPDS, third trimester: T3), the Trier Inventory of Chronic Stress (TICS-K, 1-3 weeks postpartum) and provided saliva samples (T2, T3) for maternal cortisol profiles, as computed by the area under the curve with respect to ground (AUCg) or increase (AUCi) for the cortisol awakening response (CAR) and for diurnal cortisol profiles (DAY). OXTR DNA methylation was quantified using Sequenom EpiTYPER. The number of stressful life events (P = 0.032), EPDS score (P = 0.007) and cortisol AUCgs at T2 (CAR: P = 0.020; DAY: P = 0.024) were negatively associated with OXTR DNA methylation. Our findings suggest that distinct prenatal adversities predict decreased DNA methylation in a gene that is relevant for childbirth, maternal behavior and wellbeing of mother and offspring. If a reduced OXTR methylation increases OXTR expression, our findings could suggest an epigenetic adaptation to an adverse early environment

    The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming

    Get PDF
    Summary Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) entails a mesenchymal to epithelial transition (MET). While attempting to dissect the mechanism of MET during reprogramming, we observed that knockdown (KD) of the epithelial-to-mesenchymal transition (EMT) factor SNAI1 (SNAIL) paradoxically reduced, while overexpression enhanced, reprogramming efficiency in human cells and in mouse cells, depending on strain. We observed nuclear localization of SNAI1 at an early stage of fibroblast reprogramming and using mouse fibroblasts expressing a knockin SNAI1-YFP reporter found cells expressing SNAI1 reprogrammed at higher efficiency. We further demonstrated that SNAI1 binds the let-7 promoter, which may play a role in reduced expression of let-7 microRNAs, enforced expression of which, early in the reprogramming process, compromises efficiency. Our data reveal an unexpected role for the EMT factor SNAI1 in reprogramming somatic cells to pluripotency

    MARCH1 protects the lipid raft and tetraspanin web from MHCII proteotoxicity in dendritic cells

    Get PDF
    Dendritic cells (DCs) produce major histocompatibility complex II (MHCII) in large amounts to function as professional antigen presenting cells. Paradoxically, DCs also ubiquitinate and degrade MHCII in a constitutive manner. Mice deficient in the MHCII-ubiquitinating enzyme membrane-anchored RING-CH1, or the ubiquitin-acceptor lysine of MHCII, exhibit a substantial reduction in the number of regulatory T (Treg) cells, but the underlying mechanism was unclear. Here we report that ubiquitin-dependent MHCII turnover is critical to maintain homeostasis of lipid rafts and the tetraspanin web in DCs. Lack of MHCII ubiquitination results in the accumulation of excessive quantities of MHCII in the plasma membrane, and the resulting disruption to lipid rafts and the tetraspanin web leads to significant impairment in the ability of DCs to engage and activate thymocytes for Treg cell differentiation. Thus, ubiquitin-dependent MHCII turnover represents a novel quality-control mechanism by which DCs maintain homeostasis of membrane domains that support DC's Treg cell-selecting function

    Linking heart rate variability to psychological health and brain structure in adolescents with and without conduct disorder

    Full text link
    AimsHeart rate variability (HRV) measures have been suggested in healthy individuals as a potential index of self-regulation skills, which include both cognitive and emotion regulation aspects. Studies in patients with a range of psychiatric disorders have however mostly focused on the potential association between abnormally low HRV at rest and specifically emotion regulation difficulties. Emotion regulation deficits have been reported in patients with Conduct Disorder (CD) however, the association between these emotion regulation deficits and HRV measures has yet to be fully understood. This study investigates (i) the specificity of the association between HRV and emotion regulation skills in adolescents with and without CD and (ii) the association between HRV and grey matter brain volumes in key areas of the central autonomic network which are involved in self-regulation processes, such as insula, lateral/medial prefrontal cortices or amygdala.MethodsRespiratory sinus arrhythmia (RSA) measures of HRV were collected from adolescents aged between 9–18 years (693 CD (427F)/753 typically developing youth (TD) (500F)), as part of a European multi-site project (FemNAT-CD). The Inverse Efficiency Score, a speed-accuracy trade-off measure, was calculated to assess emotion and cognitive regulation abilities during an Emotional Go/NoGo task. The association between RSA and task performance was tested using multilevel regression models. T1-weighted structural MRI data were included for a subset of 577 participants (257 CD (125F); 320 TD (186F)). The CerebroMatic toolbox was used to create customised Tissue Probability Maps and DARTEL templates, and CAT12 to segment brain images, followed by a 2 × 2 (sex × group) full factorial ANOVA with RSA as regressor of interest.ResultsThere were no significant associations between RSA and task performance, neither during emotion regulation nor during cognitive regulation trials. RSA was however positively correlated with regional grey matter volume in the left insula (pFWE = 0.011) across all subjects.ConclusionRSA was related to increased grey matter volume in the left insula across all subjects. Our results thus suggest that low RSA at rest might be a contributing or predisposing factor for potential self-regulation difficulties. Given the insula’s role in both emotional and cognitive regulation processes, these brain structural differences might impact either of those

    Chromatin-modifying enzymes as modulators of reprogramming

    Get PDF
    Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors. © 2012 Macmillan Publishers Limited. All rights reserved

    Linking heart rate variability to psychological health and brain structure in adolescents with and without conduct disorder

    Get PDF
    AimsHeart rate variability (HRV) measures have been suggested in healthy individuals as a potential index of self-regulation skills, which include both cognitive and emotion regulation aspects. Studies in patients with a range of psychiatric disorders have however mostly focused on the potential association between abnormally low HRV at rest and specifically emotion regulation difficulties. Emotion regulation deficits have been reported in patients with Conduct Disorder (CD) however, the association between these emotion regulation deficits and HRV measures has yet to be fully understood. This study investigates (i) the specificity of the association between HRV and emotion regulation skills in adolescents with and without CD and (ii) the association between HRV and grey matter brain volumes in key areas of the central autonomic network which are involved in self-regulation processes, such as insula, lateral/medial prefrontal cortices or amygdala.MethodsRespiratory sinus arrhythmia (RSA) measures of HRV were collected from adolescents aged between 9–18 years (693 CD (427F)/753 typically developing youth (TD) (500F)), as part of a European multi-site project (FemNAT-CD). The Inverse Efficiency Score, a speed-accuracy trade-off measure, was calculated to assess emotion and cognitive regulation abilities during an Emotional Go/NoGo task. The association between RSA and task performance was tested using multilevel regression models. T1-weighted structural MRI data were included for a subset of 577 participants (257 CD (125F); 320 TD (186F)). The CerebroMatic toolbox was used to create customised Tissue Probability Maps and DARTEL templates, and CAT12 to segment brain images, followed by a 2 × 2 (sex × group) full factorial ANOVA with RSA as regressor of interest.ResultsThere were no significant associations between RSA and task performance, neither during emotion regulation nor during cognitive regulation trials. RSA was however positively correlated with regional grey matter volume in the left insula (pFWE = 0.011) across all subjects.ConclusionRSA was related to increased grey matter volume in the left insula across all subjects. Our results thus suggest that low RSA at rest might be a contributing or predisposing factor for potential self-regulation difficulties. Given the insula’s role in both emotional and cognitive regulation processes, these brain structural differences might impact either of those

    The future is now: early life events preset adult behaviour

    Get PDF
    To consider the evidence that human and animal behaviours are epigenetically programmed by lifetime experiences. Extensive PubMed searches were carried out to gain a broad view of the topic, in particular from the perspective of human psychopathologies such as mood and anxiety disorders. The selected literature cited is complemented by previously unpublished data from the authors' laboratories. Evidence that physiological and behavioural functions are particularly sensitive to the programming effects of environmental factors such as stress and nutrition during early life, and perhaps at later stages of life, is reviewed and extended. Definition of stimulus- and function-specific critical periods of programmability together with deeper understanding of the molecular basis of epigenetic regulation will deliver greater appreciation of the full potential of the brain's plasticity while providing evidence-based social, psychological and pharmacological interventions to promote lifetime well-being.Work reported from the authors' laboratories was supported by European Union-funded projects CRESCENDO (FP6 Integrated Project 018652 to OFXA and DS) and SWITCHBOX (FP 7 Integrated Project 259772 to OFXA and NS). OFXA and DS were supported by the Max Planck Institute of Psychiatry and thank Professor Florian Holsboer for encouraging this work
    • …
    corecore