11 research outputs found

    Visualization of flows in a motored rotary combustion engine using holographic interferometry

    Get PDF
    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique

    MCMC Exploration of Supermassive Black Hole Binary Inspirals

    Get PDF
    The Laser Interferometer Space Antenna will be able to detect the inspiral and merger of Super Massive Black Hole Binaries (SMBHBs) anywhere in the Universe. Standard matched filtering techniques can be used to detect and characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally suited to this and other LISA data analysis problems as they are able to efficiently handle models with large dimensions. Here we compare the posterior parameter distributions derived by an MCMC algorithm with the distributions predicted by the Fisher information matrix. We find excellent agreement for the extrinsic parameters, while the Fisher matrix slightly overestimates errors in the intrinsic parameters.Comment: Submitted to CQG as a GWDAW-10 Conference Proceedings, 9 pages, 5 figures, Published Versio

    Effects of long-term exposure to an electronic containment system on the behaviour and welfare of domestic cats

    Get PDF
    Free-roaming cats are exposed to a variety of risks, including involvement in road traffic accidents. One way of mitigating these risks is to contain cats, for example using an electronic boundary fence system that delivers an electric ‘correction’ via a collar if a cat ignores a warning cue and attempts to cross the boundary. However, concerns have been expressed over the welfare impact of such systems. Our aim was to determine if long-term exposure to an electronic containment system was associated with reduced cat welfare. We compared 46 owned domestic cats: 23 cats that had been contained by an electronic containment system for more than 12 months (AF group); and 23 cats with no containment system that were able to roam more widely (C group). We assessed the cats’ behavioural responses and welfare via four behavioural tests (unfamiliar person test; novel object test; sudden noise test; cognitive bias test) and an owner questionnaire. In the unfamiliar person test, C group lip-licked more than the AF group, whilst the AF group looked at, explored and interacted more with the unfamiliar person than C group. In the novel object test, the AF group looked at and explored the object more than C group. No significant differences were found between AF and C groups for the sudden noise or cognitive bias tests. Regarding the questionnaire, C group owners thought their cats showed more irritable behaviour and AF owners thought that their cats toileted inappropriately more often than C owners. Overall, AF cats were less neophobic than C cats and there was no evidence of significant differences between the populations in general affective state. These findings indicate that an electronic boundary fence with clear pre-warning cues does not impair the long term quality of life of cat

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Multi-dimensional Precision Livestock Farming: a potential toolbox for sustainable rangeland management

    Get PDF
    Background Precision Livestock Farming (PLF) is a promising approach to minimize the conflicts between socio-economic activities and landscape conservation. However, its application on extensive systems of livestock production can be challenging. The main difficulties arise because animals graze on large natural pastures where they are exposed to competition with wild herbivores for heterogeneous and scarce resources, predation risk, adverse weather, and complex topography. Considering that the 91% of the world’s surface devoted to livestock production is composed of extensive systems (i.e., rangelands), our general aim was to develop a PLF methodology that quantifies: (i) detailed behavioural patterns, (ii) feeding rate, and (iii) costs associated with different behaviours and landscape traits. Methods For this, we used Merino sheep in Patagonian rangelands as a case study. We combined data from an animal-attached multi-sensor tag (tri-axial acceleration, tri-axial magnetometry, temperature sensor and Global Positioning System) with landscape layers from a Geographical Information System to acquire data. Then, we used high accuracy decision trees, dead reckoning methods and spatial data processing techniques to show how this combination of tools could be used to assess energy balance, predation risk and competition experienced by livestock through time and space. Results The combination of methods proposed here are a useful tool to assess livestock behaviour and the different factors that influence extensive livestock production, such as topography, environmental temperature, predation risk and competition for heterogeneous resources. We were able to quantify feeding rate continuously through time and space with high accuracy and show how it could be used to estimate animal production and the intensity of grazing on the landscape. We also assessed the effects of resource heterogeneity (inferred through search times), and the potential costs associated with predation risk, competition, thermoregulation and movement on complex topography. Discussion The quantification of feeding rate and behavioural costs provided by our approach could be used to estimate energy balance and to predict individual growth, survival and reproduction. Finally, we discussed how the information provided by this combination of methods can be used to develop wildlife-friendly strategies that also maximize animal welfare, quality and environmental sustainability

    Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method

    No full text
    We present a Bayesian Markov chain Monte Carlo technique for estimating the astrophysical parameters of gravitational radiation signals from a neutron star in laser interferometer data. This computational algorithm can estimate up to six unknown parameters of the target, including the rotation frequency and frequency derivative, using reparametrization, delayed rejection and simulated annealing. We highlight how a simple extension of the method, distributed over multiple computer processors, will allow for a search over a narrow frequency band. The ultimate goal of this research is to search for sources at known locations, but uncertain spin parameters; an example would be SN1987A

    Disrupted seasonal biology impacts health, food security and ecosystems

    Get PDF
    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research
    corecore