550 research outputs found

    A short proof of a symmetry identity for the (q,μ,ν)(q,\mu,\nu)-deformed Binomial distribution

    Full text link
    We give a short and elementary proof of a (q,μ,ν)(q, \mu, \nu)-deformed Binomial distribution identity arising in the study of the (q,μ,ν)(q, \mu, \nu)-Boson process and the (q,μ,ν)(q, \mu, \nu)-TASEP. This identity found by Corwin in [4] was a key technical step to prove an intertwining relation between the Markov transition matrices of these two classes of discrete-time Markov chains. This was used in turn to derive exact formulas for a large class of observables of both these processes.Comment: 3 page

    The qq-Hahn asymmetric exclusion process

    Full text link
    We introduce new integrable exclusion and zero-range processes on the one-dimensional lattice that generalize the qq-Hahn TASEP and the qq-Hahn Boson (zero-range) process introduced in [Pov13] and further studied in [Cor14], by allowing jumps in both directions. Owing to a Markov duality, we prove moment formulas for the locations of particles in the exclusion process. This leads to a Fredholm determinant formula that characterizes the distribution of the location of any particle. We show that the model-dependent constants that arise in the limit theorems predicted by the KPZ scaling theory are recovered by a steepest descent analysis of the Fredholm determinant. For some choice of the parameters, our model specializes to the multi-particle-asymmetric diffusion model introduced in [SW98]. In that case, we make a precise asymptotic analysis that confirms KPZ universality predictions. Surprisingly, we also prove that in the partially asymmetric case, the location of the first particle also enjoys cube-root fluctuations which follow Tracy-Widom GUE statistics.Comment: 40 pages,11 figures. v3: Presentation improved in Introduction and Section 4. to appear in Ann. Appl. Proba

    How self-regulation, the storage effect and their interaction contribute to coexistence in stochastic and seasonal environments

    Full text link
    Explaining coexistence in species-rich communities of primary producers remains a challenge for ecologists because of their likely competition for shared resources. Following Hutchinson's seminal suggestion, many theoreticians have tried to create diversity through a fluctuating environment, which impairs or slows down competitive exclusion. However, fluctuating-environment models often only produce a dozen of coexisting species at best. Here, we investigate how to create richer communities in fluctuating environments, using an empirically parameterized model. Building on the forced Lotka-Volterra model of Scranton and Vasseur (Theor Ecol 9(3):353-363, 2016), inspired by phytoplankton communities, we have investigated the effect of two coexistence mechanisms, namely the storage effect and higher intra- than interspecific competition strengths (i.e., strong self-regulation). We tuned the intra/inter competition ratio based on empirical analyses, in which self-regulation dominates interspecific interactions. Although a strong self-regulation maintained more species (50%) than the storage effect (25%), we show that none of the two coexistence mechanisms considered could ensure the coexistence of all species alone. Realistic seasonal environments only aggravated that picture, as they decreased persistence relative to a random environment. However, strong self-regulation and the storage effect combined superadditively so that all species could persist with both mechanisms at work. Our results suggest that combining different coexistence mechanisms into community models might be more fruitful than trying to find which mechanism best explains diversity. We additionally highlight that while biomass-trait distributions provide some clues regarding coexistence mechanisms, they cannot indicate unequivocally which mechanisms are at play.Comment: 27 pages, 9 figures, Theor Ecol (2019

    Fitting stochastic predator-prey models using both population density and kill rate data

    Full text link
    Most mechanistic predator-prey modelling has involved either parameterization from process rate data or inverse modelling. Here, we take a median road: we aim at identifying the potential benefits of combining datasets, when both population growth and predation processes are viewed as stochastic. We fit a discrete-time, stochastic predator-prey model of the Leslie type to simulated time series of densities and kill rate data. Our model has both environmental stochasticity in the growth rates and interaction stochasticity, i.e., a stochastic functional response. We examine what the kill rate data brings to the quality of the estimates, and whether estimation is possible (for various time series lengths) solely with time series of population counts or biomass data. Both Bayesian and frequentist estimation are performed, providing multiple ways to check model identifiability. The Fisher Information Matrix suggests that models with and without kill rate data are all identifiable, although correlations remain between parameters that belong to the same functional form. However, our results show that if the attractor is a fixed point in the absence of stochasticity, identifying parameters in practice requires kill rate data as a complement to the time series of population densities, due to the relatively flat likelihood. Only noisy limit cycle attractors can be identified directly from population count data (as in inverse modelling), although even in this case, adding kill rate data - including in small amounts - can make the estimates much more precise. Overall, we show that under process stochasticity in interaction rates, interaction data might be essential to obtain identifiable dynamical models for multiple species. These results may extend to other biotic interactions than predation, for which similar models combining interaction rates and population counts could be developed

    Agricultural land-use and biological conservation

    Get PDF
    Land use change is a main driver of biodiversity erosion, especially in agricultural landscapes. Incentive-based land-use policies aim at influence land-use pattern, and are usually evaluated with habitat suitability scores, without accounting explicitly for the ecology of the studied population. In this paper, we propose a methodology to define and evaluate agricultural land-use policies with respect to their ecological outcomes directly. We use an ecological-economic model to link the regional abundance of a bird species to the economic context. Policies based on such ecological economics approaches appear to be more efficient than that based on landscape evaluation, from both economic and ecological viewpoints.Ecological-economic model, agriculture, land-use, landscape, conservation
    • …
    corecore