242 research outputs found

    Social ecological influences on treatment decision-making in men diagnosed with low risk, localised prostate cancer

    Get PDF
    Objective: Individuals diagnosed with low risk, localised prostate cancer (PCa) face a difficult decision between active surveillance (AS) and definitive treatment. We aimed to explore perceived influences on treatment decision-making from the patient and partner\u27s perspectives. Methods: Patients (and partners) who met AS criteria and had chosen their treatment were recruited. Semi-structured individual interviews were conducted via telephone to explore experiences of diagnosis, impact on patient lifestyle, experiences with physicians, treatment preferences/choice, treatment information understanding and needs, and overall decision-making process. Interviews were audio recorded, transcribed verbatim, and analysed using Reflexive Thematic Analysis. Results: Twenty-four male patients (18 chose AS) and 12 female partners participated. Five themes relating to social-ecological influences on treatment choice were identified: (1) partner support and direct influence on patient treatment choice, (2) patient and partner vicarious experiences may influence treatment decisions, (3) the influence of the patient\u27s life circumstances, (4) disclosing to wider social networks: friends, family, and co-workers, and (5) the importance of a good relationship and experience with physicians. Additionally, two themes were identified relating to information patients and partners received about the treatment options during their decision-making process. Conclusions: A range of individual and social influences on treatment decision-making were reported. Physicians providing treatment recommendations should consider and discuss the patient and partner\u27s existing beliefs and treatment preferences and encourage shared decision-making. Further research on treatment decision-making of partnered and non-partnered PCa patients is required. We recommend research considers social ecological factors across the personal, interpersonal, community, and policy levels

    Alopecia areata is characterized by dysregulation in systemic type 17 and type 2 cytokines, which may contribute to disease‐associated psychological morbidity

    Get PDF
    Background: Alopecia areata (AA) is a common autoimmune disease, causing patchy hair loss that can progress to involve the entire scalp (totalis) or body (universalis). CD8+NKG2D+ T cells dominate hair follicle pathogenesis, but the specific mechanisms driving hair loss are not fully understood. Objectives To provide a detailed insight into the systemic cytokine signature associated with AA, and assess the association between cytokines and depression. Methods: Multiplex analysis of plasma cytokines from AA patients, psoriatic arthritis (PsA) patients and healthy controls. We also assessed incidence of depression and anxiety using the Hospital Anxiety and Depression Scale. Results: Our analysis identified a systemic inflammatory signature associated with AA, characterised by elevated levels of IL-17A, IL-17F, IL-21 and IL-23 indicative of a type 17 immune response. Circulating levels of the type 2 cytokines IL-33, IL-31 and IL-17E/25 are also significantly increased in AA. In comparison to PsA, AA was associated with higher levels of IL-17F, IL-17E and IL-23. We hypothesised that circulating inflammatory cytokines may contribute to wider comorbidities associated with AA. We assessed psychiatric comorbidity in AA using the Hospital Anxiety and Depression Scale and found that 18% and 51% of people with AA experienced symptoms of depression and anxiety, respectively. Using linear regression modelling, we identified that levels of IL-22 and IL-17E are positively and significantly associated with depression. Conclusion: Our data highlight changes in both type 17 and 2 cytokines, suggesting that complex systemic cytokine profiles may contribute both to the pathogenesis of AA and to the associated depression

    Pricing When Customers Have Limited Attention

    Full text link

    A meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing

    Get PDF
    BACKGROUND: Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. METHODS: We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. RESULTS: Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. CONCLUSIONS: Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. FUNDING: UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study

    Primary osteoarthritis chondrocyte map of chromatin conformation reveals novel candidate effector genes

    Get PDF
    Objectives: Osteoarthritis is a complex disease with a huge public health burden. Genome-wide association studies (GWAS) have identified hundreds of osteoarthritis-associated sequence variants, but the effector genes underpinning these signals remain largely elusive. Understanding chromosome organisation in three-dimensional (3D) space is essential for identifying long-range contacts between distant genomic features (e.g., between genes and regulatory elements), in a tissue-specific manner. Here, we generate the first whole genome chromosome conformation analysis (Hi-C) map of primary osteoarthritis chondrocytes and identify novel candidate effector genes for the disease. Methods: Primary chondrocytes collected from 8 patients with knee osteoarthritis underwent Hi-C analysis to link chromosomal structure to genomic sequence. The identified loops were then combined with osteoarthritis GWAS results and epigenomic data from primary knee osteoarthritis chondrocytes to identify variants involved in gene regulation via enhancer-promoter interactions. Results: We identified 345 genetic variants residing within chromatin loop anchors that are associated with 77 osteoarthritis GWAS signals. Ten of these variants reside directly in enhancer regions of 10 newly described active enhancer-promoter loops, identified with multiomics analysis of publicly available chromatin immunoprecipitation sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data from primary knee chondrocyte cells, pointing to two new candidate effector genes SPRY4 and PAPPA (pregnancy-associated plasma protein A) as well as further support for the gene SLC44A2 known to be involved in osteoarthritis. For example, PAPPA is directly associated with the turnover of insulin-like growth factor 1 (IGF-1) proteins, and IGF-1 is an important factor in the repair of damaged chondrocytes. Conclusions: We have constructed the first Hi-C map of primary human chondrocytes and have made it available as a resource for the scientific community. By integrating 3D genomics with large-scale genetic association and epigenetic data, we identify novel candidate effector genes for osteoarthritis, which enhance our understanding of disease and can serve as putative high-value novel drug targets

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Plasmid pP62BP1 isolated from an Arctic Psychrobacter sp. strain carries two highly homologous type II restriction-modification systems and a putative organic sulfate metabolism operon

    Get PDF
    The complete nucleotide sequence of plasmid pP62BP1 (34,467 bp), isolated from Arctic Psychrobacter sp. DAB_AL62B, was determined and annotated. The conserved plasmid backbone is composed of several genetic modules, including a replication system (REP) with similarities to the REP region of the iteron-containing plasmid pPS10 of Pseudomonas syringae. The additional genetic load of pP62BP1 includes two highly related type II restriction-modification systems and a set of genes (slfRCHSL) encoding enzymes engaged in the metabolism of organic sulfates, plus a putative transcriptional regulator (SlfR) of the AraC family. The pP62BP1 slflocus has a compact and unique structure. It is predicted that the enzymes SlfC, SlfH, SlfS and SlfL carry out a chain of reactions leading to the transformation of alkyl sulfates into acyl-CoA, with dodecyl sulfate (SDS) as a possible starting substrate. Comparative analysis of the nucleotide sequences of pP62BP1 and other Psychrobacter spp. plasmids revealed their structural diversity. However, the presence of a few highly conserved DNA segments in pP62BP1, plasmid 1 of P. cryohalolentis K5 and pRWF-101 of Psychrobacter sp. PRwf-1 is indicative of recombinational shuffling of genetic information, and is evidence of lateral gene transfer in the Arctic environment

    A Functional Proteomic Method for Biomarker Discovery

    Get PDF
    The sequencing of the human genome holds out the hope for personalized medicine, but it is clear that analysis of DNA or RNA content alone is not sufficient to understand most disease processes. Proteomic strategies that allow unbiased identification of proteins and their post-transcriptional and -translation modifications are an essential complement to genomic strategies. However, the enormity of the proteome and limitations in proteomic methods make it difficult to determine the targets that are particularly relevant to human disease. Methods are therefore needed that allow rational identification of targets based on function and relevance to disease. Screening methodologies such as phage display, SELEX, and small-molecule combinatorial chemistry have been widely used to discover specific ligands for cells or tissues of interest, such as tumors. Those ligands can be used in turn as affinity probes to identify their cognate molecular targets when they are not known in advance. Here we report an easy, robust and generally applicable approach in which phage particles bearing cell- or tissue-specific peptides serve directly as the affinity probes for their molecular targets. For proof of principle, the method successfully identified molecular binding partners, three of them novel, for 15 peptides specific for pancreatic cancer
    corecore