73 research outputs found
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010
The Eurodelta-Trends (EDT) multi-model experiment, aimed at assessing the efficiency of emission mitigation measures in improving air quality in Europe during 1990–2010, was designed to answer a series of questions regarding European pollution trends; i.e. were there significant trends detected by observations? Do the models manage to reproduce observed trends? How close is the agreement between the models and how large are the deviations from observations? In this paper, we address these issues with respect to particulate matter (PM) pollution. An in-depth trend analysis has been performed for PM10 and PM2.5 for the period of 2000–2010, based on results from six chemical transport models and observational data from the EMEP (Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) monitoring network. Given harmonization of set-up and main input data, the differences in model results should mainly result from differences in the process formulations within the models themselves, and the spread in the model-simulated trends could be regarded as an indicator for modelling uncertainty.
The model ensemble simulations indicate overall decreasing trends in PM10 and PM2.5 from 2000 to 2010, with the total reductions of annual mean concentrations by between 2 and 5 (7 for PM10) µg m−3 (or between 10 % and 30 %) across most of Europe (by 0.5–2 µg m−3 in Fennoscandia, the north-west of Russia and eastern Europe) during the studied period. Compared to PM2.5, relative PM10 trends are weaker due to large inter-annual variability of natural coarse PM within the former. The changes in the concentrations of PM individual components are in general consistent with emission reductions. There is reasonable agreement in PM trends estimated by the individual models, with the inter-model variability below 30 %–40 % over most of Europe, increasing to 50 %–60 % in the northern and eastern parts of the EDT domain.
Averaged over measurement sites (26 for PM10 and 13 for PM2.5), the mean ensemble-simulated trends are −0.24 and −0.22 µg m−3 yr−1 for PM10 and PM2.5, which are somewhat weaker than the observed trends of −0.35 and −0.40 µg m−3 yr−1 respectively, partly due to model underestimation of PM concentrations. The correspondence is better in relative PM10 and PM2.5 trends, which are −1.7 % yr−1 and −2.0 % yr−1 from the model ensemble and −2.1 % yr−1 and −2.9 % yr−1 from the observations respectively. The observations identify significant trends (at the 95 % confidence level) for PM10 at 56 % of the sites and for PM2.5 at 36 % of the sites, which is somewhat less that the fractions of significant modelled trends. Further, we find somewhat smaller spatial variability of modelled PM trends with respect to the observed ones across Europe and also within individual countries.
The strongest decreasing PM trends and the largest number of sites with significant trends are found for the summer season, according to both the model ensemble and observations. The winter PM trends are very weak and mostly insignificant. Important reasons for that are the very modest reductions and even increases in the emissions of primary PM from residential heating in winter. It should be kept in mind that all findings regarding modelled versus observed PM trends are limited to the regions where the sites are located.
The analysis reveals considerable variability of the role of the individual aerosols in PM10 trends across European countries. The multi-model simulations, supported by available observations, point to decreases in concentrations playing an overall dominant role. Also, we see relatively large contributions of the trends of and to PM10 decreasing trends in Germany, Denmark, Poland and the Po Valley, while the reductions of primary PM emissions appear to be a dominant factor in bringing down PM10 in France, Norway, Portugal, Greece and parts of the UK and Russia. Further discussions are given with respect to emission uncertainties (including the implications of not accounting for forest fires and natural mineral dust by some of the models) and the effect of inter-annual meteorological variability on the trend analysis.The Ineris coordination of the EURODELTA-Trends exercise has been supported by the French Ministry in charge of Ecology in the context of the Task Force on Measurement and Modelling of the EMEP program of the LRTAP Convention. The CHIMERE simulations were performed using the TGCC supercomputers under GENCI computing allocation. The work of EMEP MSC-W has been supported by the EMEP Trust Fund under the United Nations Economic Commission for Europe (UN ECE). Funding for the MATCH participation was jointly divided between Nordforsk through the research programme Nordic Welfare (grant no. 75007), the Swedish Environmental Protection Agency through the SCAC research programme, and the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, with the funding organisations AKA (contract no. 326328), ANR (grant no. ANR-18-EBI4-007), BMBF (KFZ; grant no. 01LC1810A), FORMAS (contract nos. 2018-02434, 2018-02436, 2018-02437, and 2018-02438) and MICINN (APCIN; grant no. PCI2018-093149). Giancarlo Ciarelli has been supported by ADEME and the Swiss National Science Foundation (grant no. P2EZP2_175166). MINNI participation in this project was supported by the “Cooperation Agreement for support to international Conventions, Protocols and related negotiations on air pollution issues”, funded by the Italian Ministry for the Environment, Land and Sea. Financial support for the Institute for Advanced Sustainability Studies (IASS) has been provided by the Federal Ministry of Education and Research of Germany (BMBF) and the Ministry for Science, Research and Culture of the State of Brandenburg (MWFK). The work of CIEMAT has been supported by the Ministry for the Ecological Transition and Demographic Challenge (MITERD).Peer Reviewed"Article signat per 23 autors/es: Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Oter, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani"Postprint (published version
Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005
© Author(s) 2016.Four regional chemistry transport models were applied to simulate the concentration and composition of particulate matter (PM) in Europe for 2005 with horizontal resolution 20 km. The modelled concentrations were compared with the measurements of PM chemical composition by the European Monitoring and Evaluation Programme (EMEP) monitoring network. All models systematically underestimated PM10 and PM2:5 by 10–60 %, depending on the model and the season of the year, when the calculated dry PM mass was compared with the measurements. The average water content at laboratory conditions was estimated between 5 and 20% for PM2:5 and between 10 and 25% for PM10. For majority of the PM chemical components, the relative underestimation was smaller than it was for total PM, exceptions being the carbonaceous particles and mineral dust. Some species, such as sea salt and NO3, were overpredicted by the models. There were notable differences between the models’ predictions of the seasonal variations of PM, mainly attributable to different treatments or omission of some source categories and aerosol processes. Benzo(a)pyrene concentrations were overestimated by all the models over the whole year. The study stresses the importance of improving the models’ skill in simulating mineral dust and carbonaceous compounds, necessity for high-quality emissions from wildland fires, as well as the need for an explicit consideration of aerosol water content in model–measurement comparison.Peer reviewedFinal Published versio
Recommended from our members
Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015
Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing, using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g., -1 to -3%/yr in aerosols over 30 the US and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by +0.17 ±0.08 Wm-2, with approximately 1/3 due to ozone. This increase is more strongly positive than that reported in IPCC AR5. The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990-2010
The Eurodelta-Trends (EDT) multi-model experiment, aimed at assessing the efficiency of emission mitigation measures in improving air quality in Europe during 1990-2010, was designed to answer a series of questions regarding European pollution trends; i.e. were there significant trends detected by observations? Do the models manage to reproduce observed trends? How close is the agreement between the models and how large are the deviations from observations? In this paper, we address these issues with respect to particulate matter (PM) pollution. An in-depth trend analysis has been performed for PM10 and PM2.5 for the period of 2000-2010, based on results from six chemical transport models and observational data from the EMEP (Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) monitoring network. Given harmonization of set-up and main input data, the differences in model results should mainly result from differences in the process formulations within the models themselves, and the spread in the model-simulated trends could be regarded as an indicator for modelling uncertainty.The model ensemble simulations indicate overall decreasing trends in PM10 and PM2.5 from 2000 to 2010, with the total reductions of annual mean concentrations by between 2 and 5 (7 for PM10) mu g m(-3) (or between 10 % and 30 %) across most of Europe (by 0.5-2 mu g m(-3) in Fennoscandia, the north-west of Russia and eastern Europe) during the studied period. Compared to PM2.5, relative PM10 trends are weaker due to large interannual variability of natural coarse PM within the former. The changes in the concentrations of PM individual components are in general consistent with emission reductions. There is reasonable agreement in PM trends estimated by the individual models, with the inter-model variability below 30 %-40 % over most of Europe, increasing to 50 %-60 % in the northern and eastern parts of the EDT domain.Averaged over measurement sites (26 for PM10 and 13 for PM2.5), the mean ensemble-simulated trends are - 0.24 and -0.22 mu g m(-3) yr(-1) for PM10 and PM2.5, which are somewhat weaker than the observed trends of - 0.35 and -0.40 mu g m(-3) yr(-1) respectively, partly due to model underestimation of PM concentrations. The correspondence is better in relative PM10 and PM2.5 trends, which are -1.7 % yr(-1) and -2.0 % yr(-1) from the model ensemble and -2.1 % yr(-1) and -2.9 % yr(-1) from the observations respectively. The observations identify significant trends (at the 95 % confidence level) for PM10 at 56 % of the sites and for PM2.5 at 36 % of the sites, which is somewhat less that the fractions of significant modelled trends. Further, we find somewhat smaller spatial variability of modelled PM trends with respect to the observed ones across Europe and also within individual countries.The strongest decreasing PM trends and the largest number of sites with significant trends are found for the summer season, according to both the model ensemble and observations. The winter PM trends are very weak and mostly insignificant. Important reasons for that are the very modest reductions and even increases in the emissions of primary PM from residential heating in winter. It should be kept in mind that all findings regarding modelled versus observed PM trends are limited to the regions where the sites are located.The analysis reveals considerable variability of the role of the individual aerosols in PM10 trends across European countries. The multi-model simulations, supported by available observations, point to decreases in SO42- concentrations playing an overall dominant role. Also, we see relatively large contributions of the trends of NH4+ and NO3- to PM10 decreasing trends in Germany, Denmark, Poland and the Po Valley, while the reductions of primary PM emissions appear to be a dominant factor in bringing down PM10 in France, Norway, Portugal, Greece and parts of the UK and Russia. Further discussions are given with respect to emission uncertainties (including the implications of not accounting for forest fires and natural mineral dust by some of the models) and the effect of inter-annual meteorological variability on the trend analysis.Peer reviewe
Global and Regional Trends of Atmospheric Sulfur
The profound changes in global SO[subscript 2] emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and europe. europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and east Asia. the uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. the agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget
Evaluating modelled tropospheric columns of CH , CO, and O in the Arctic using ground-based Fourier transform infrared (FTIR) measurements
This study evaluates tropospheric columns of methane, carbon monoxide, and ozone in the Arctic simulated by 11 models. The Arctic is warming at nearly 4 times the global average rate, and with changing emissions in and near the region, it is important to understand Arctic atmospheric composition and how it is changing. Both measurements and modelling of air pollution in the Arctic are difficult, making model validation with local measurements valuable. Evaluations are performed using data from five high-latitude ground-based Fourier transform infrared (FTIR) spectrometers in the Network for the Detection of Atmospheric Composition Change (NDACC). The models were selected as part of the 2021 Arctic Monitoring and Assessment Programme (AMAP) report on short-lived climate forcers. This work augments the model–measurement comparisons presented in that report by including a new data source: column-integrated FTIR measurements, whose spatial and temporal footprint is more representative of the free troposphere than in situ and satellite measurements. Mixing
ratios of trace gases are modelled at 3-hourly intervals by CESM, CMAM, DEHM, EMEP MSC-W, GEM-
MACH, GEOS-Chem, MATCH, MATCH-SALSA, MRI-ESM2, UKESM1, and WRF-Chem for the years 2008, 2009, 2014, and 2015. The comparisons focus on the troposphere (0–7 km partial columns) at Eureka, Canada;
Thule, Greenland; Ny Ålesund, Norway; Kiruna, Sweden; and Harestua, Norway. Overall, the models are biased low in the tropospheric column, on average by −9.7 % for CH, −21 % for CO, and −18 % for O. Results for CH are relatively consistent across the 4 years, whereas CO has a maximum negative bias in the spring and minimum in the summer and O has a maximum difference centered around the summer. The average differences for the models are within the FTIR uncertainties for approximately 15 % of the model–location comparisons
AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations
Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes. Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50% decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2/3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1. Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AOD(f), AOD(c)), Angstrom exponent (AE), dry surface scattering (SCdry), and absorption (AC(dry)) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21% +/- 20% (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from -37% (MODIS-Terra) to -16% (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R > 0.75), suggesting that the models are capable of capturing spatiotemporal variations in AOD. We find a much larger underestimate in coarse AOD(c) (similar to-45% +/- 25 %) than in fine AOD(f) (similar to-15% +/- 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AOD(c) bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AOD(c). Column AEs are underestimated by about 10% +/- 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140% if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment. Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of -35% +/- 25% and -20% +/- 18% for SCdry and AC(dry), respectively. The larger underestimate of SCdry than AC(dry) suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models. Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions. Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. -15 %, however, with a considerably large interquartile range, suggesting a spread between -35% and +10 %.Peer reviewe
Multi-model simulations of aerosol and ozone radiative forcing for the period 1990-2015
Over the past decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing, using recently updated emission data for the period 1990–2015, as simulated by seven global atmospheric composition models. The models broadly reproduce the large-scale changes in surface aerosol and ozone based on observations (e.g., −1 to −3 %/yr in aerosols over US and Europe). The global mean radiative forcing due to ozone and aerosols changes over the 1990–2015 period increased by about +0.2 W m−2, with approximately 1/3 due to ozone. This increase is stronger positive than reported in IPCC AR5. The main reason for the increased positive radiative forcing of aerosols over this period is the substantial reduction of global mean SO2 emissions which is stronger in the new emission inventory compared to the IPCC, and higher black carbon emissions
Modeled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection
The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat
Air pollution trends in the EMEP region between 1990 and 2012
The present report synthesises the main features of the evolution over the 1990-2012 time period of the concentration and deposition of air pollutants relevant in the context of the Convention on Long-range Transboundary Air Pollution: (i) ozone, (ii) sulfur and nitrogen compounds and particulate matter, (iii) heavy metals and persistent organic pollutants. It is based on observations gathered in State Parties to the Convention within the EMEP monitoring network of regional background stations, as well as relevant modelling initiatives. Joint Report of:
EMEP Task Force on Measurements and Modelling (TFMM),
Chemical Co-ordinating Centre (CCC),
Meteorological Synthesizing Centre-East (MSC-E),
Meteorological Synthesizing Centre-West (MSC-W)
- …