11 research outputs found

    Non-Native Forest Tree Species in Europe: The Question of Seed Origin in Afforestation

    Get PDF
    Non-native forest tree species have been introduced in Europe since the 16th century, but only in the second half of the 20th century the significance of the seed source origin for their economic use was recognized, resulting in the establishment of numerous provenance trials at a national, regional, European and International level, as those led by IUFRO. Breeding programs have also been launched in the continent for the most economically important species. Aim of this work is the formulation of provenance recommendations for planting of five non-native tree species in Europe (Douglas fir, grand fir, Sitka spruce, lodgepole pine and black locust), based on the information obtained from twenty countries, in the frame of the EU FP-1403 NNEXT Cost Action. The survey revealed that official and non-official national recommendations, based on provenance research results, have been elaborated and followed at a different level and extend for the above five species, but only for Douglas fir recommendations exist in almost all the participating to the survey countries. The compilation of provenance recommendations across Europe for each species is presented in the current work. Besides the recommended introduced seed sources, European seed sources are also preferred for planting, due to ease of access and high availability of forest reproductive material. European breeding programs yielding genetic material of high productivity and quality constitute currently the seed source of choice for several species and countries. Consolidation of trial data obtained across countries will allow the joint analysis that is urgently needed to draw solid conclusions, and will facilitate the development of ‘Universal-Response-Functions’ for the species of interest, rendering possible the identification of the genetic material suitable for global change. New provenance trial series that will test seed sources from the entire climatic range of the species, established in sites falling within and outside the environmental envelopes of their natural ranges, are urgently needed to pinpoint and understand the species-specific climate constraints, as well as to correlate functional traits to the seed origin and the environmental conditions of the test sites, so that the selection of suitable forest reproductive material of non-native tree species in the face of climate change can be feasible.publishedVersio

    Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations

    Get PDF
    The fate of peripheral forest tree populations is of particular interest in the context of climate change. These populations may concurrently be those where the most significant evolutionary changes will occur; those most facing increasing extinction risk; the source of migrants for the colonization of new areas at leading edges; or the source of genetic novelty for reinforcing standing genetic variation in various parts of the range. Deciding which strategy to implement for conserving and sustainably using the genetic resources of peripheral forest tree populations is a challenge. Here, we review the genetic and ecological processes acting on different types of peripheral populations and indicate why these processes may be of general interest for adapting forests and forest management to climate change. We particularly focus on peripheral populations at the rear edge of species distributions where environmental challenges are or will become most acute. We argue that peripheral forest tree populations are “natural laboratories” for resolving priority research questions such as how the complex interaction between demographic processes and natural selection shape local adaptation; and whether genetic adaptation will be sufficient to allow the long-term persistence of species within their current distribution. Peripheral populations are key assets for adaptive forestry which need specific measures for their preservation. The traditionally opposing views which may exist between conservation planning and sustainable forestry need to be reconciled and harmonized for managing peripheral populations. Based on existing knowledge, we suggest approaches and principles which may be used for the management and conservation of these distinctive and valuable populations, to maintain active genetic and ecological processes that have sustained them over time

    Monitoring of species’ genetic diversity in Europe varies greatly and overlooks potential climate change impacts

    Get PDF
    Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species’ joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union’s Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity

    Non-Native Forest Tree Species in Europe: The Question of Seed Origin in Afforestation

    Get PDF
    Non-native forest tree species have been introduced in Europe since the 16th century, but only in the second half of the 20th century the significance of the seed source origin for their economic use was recognized, resulting in the establishment of numerous provenance trials at a national, regional, European and International level, as those led by IUFRO. Breeding programs have also been launched in the continent for the most economically important species. Aim of this work is the formulation of provenance recommendations for planting of five non-native tree species in Europe (Douglas fir, grand fir, Sitka spruce, lodgepole pine and black locust), based on the information obtained from twenty countries, in the frame of the EU FP-1403 NNEXT Cost Action. The survey revealed that official and non-official national recommendations, based on provenance research results, have been elaborated and followed at a different level and extend for the above five species, but only for Douglas fir recommendations exist in almost all the participating to the survey countries. The compilation of provenance recommendations across Europe for each species is presented in the current work. Besides the recommended introduced seed sources, European seed sources are also preferred for planting, due to ease of access and high availability of forest reproductive material. European breeding programs yielding genetic material of high productivity and quality constitute currently the seed source of choice for several species and countries. Consolidation of trial data obtained across countries will allow the joint analysis that is urgently needed to draw solid conclusions, and will facilitate the development of ‘Universal-Response-Functions’ for the species of interest, rendering possible the identification of the genetic material suitable for global change. New provenance trial series that will test seed sources from the entire climatic range of the species, established in sites falling within and outside the environmental envelopes of their natural ranges, are urgently needed to pinpoint and understand the species-specific climate constraints, as well as to correlate functional traits to the seed origin and the environmental conditions of the test sites, so that the selection of suitable forest reproductive material of non-native tree species in the face of climate change can be feasibleThis paper is an output from the European COST Action FP1403 ‘Non-native tree species for European forests—experiences, risks and opportunities’ (NNEXT), and specifically the Working group “Pathways”, in which all authors participated and contributed information in the relevant questionnair

    Effect of wastewater sludge treatment on early growth and physiological responses of willow (Salix spp.) and poplar (Populus spp.) pot-grown plants

    Get PDF
    Combining biomass production from fast-growing woody species with wastewater treatment is an attractive concept from the economic, energy and environmental points of view. A pilot experiment on study-ing the effect of wastewater treatment on the early growth and initial physiological responses of willow and poplar plants was carried out in greenhouse conditions. The survival, height growth, net photosyn-thesis, stomatal conductance and transpiration of two hybrid clones of black poplar (Populus x euroameri-cana (Dode) Guinier) (I-214 and I-45/51) and white willow (S. alba L.) pot-grown plants treated with different doses of agrochemically characterised wastewater sludge were studied during the establishment year. The height growth and number of resprouted willow shoots were also measured during the second year after cutting, at the end of the vegetation season. While the early growth height of poplar clones was markedly affected by the clone origin and wastewater sludge treatment, the latter did not considerably influence the height of the willow plants either during the establishment and the following year, but essentially increased the number of resprouted shoots during the second vegetation season. The rate of CO2 assimilation of willow plants was significantly influenced by the wastewater sludge treatment, with plants grown at the higher doses displaying higher photosynthetic performance. The application of wastewater sludge had no essential impact on the values of the physiological parameters of the poplar plants, but particular responses were found among the clones

    Application of vitrification-derived cryotechniques for long-term storage of poplar and aspen (Populus spp.) germplasm

    Get PDF
    The application of three different vitrification-based freezing strategies for the cryostorage of white poplar (Populus alba L.) and hybrid aspen (P. tremula L. × P. tremuloides Michx.) have been assessed. The PVS2 vitrification protocol was successfully applied to two white poplar in vitro clones stored for more than 6 months in slow-growth conditions (4 °C, in darkness) and showing clear signs of explant etiolation and decay. After 60 min of PVS2 treatment, P. alba L. (cv. Villafranca) explants isolated from axillary buds demonstrated significantly better potential for post-freeze regrowth (64%) compared to those obtained from apical buds (17%). Similarly, a high level of survival (78%) of the frozen hybrid aspen shoot tips was recorded following the application of the same technique. Using the encapsulation-vitrification procedure, no toxic effects of the PVS2 treatment were noticed after 120 min exposure, however none of the cryopreserved (poplar and aspen) explants survived after 3 weeks. In contrast, the droplet-vitrification technique appeared to be very efficient in the cryopreservation of white poplar shoot tips, which increases the opportunities for wider application of this method in other woody species.vo

    Non-Native Forest Tree Species in Europe: The Question of Seed Origin in Afforestation

    No full text
    Non-native forest tree species have been introduced in Europe since the 16th century, but only in the second half of the 20th century the significance of the seed source origin for their economic use was recognized, resulting in the establishment of numerous provenance trials at a national, regional, European and International level, as those led by IUFRO. Breeding programs have also been launched in the continent for the most economically important species. Aim of this work is the formulation of provenance recommendations for planting of five non-native tree species in Europe (Douglas fir, grand fir, Sitka spruce, lodgepole pine and black locust), based on the information obtained from twenty countries, in the frame of the EU FP-1403 NNEXT Cost Action. The survey revealed that official and non-official national recommendations, based on provenance research results, have been elaborated and followed at a different level and extend for the above five species, but only for Douglas fir recommendations exist in almost all the participating to the survey countries. The compilation of provenance recommendations across Europe for each species is presented in the current work. Besides the recommended introduced seed sources, European seed sources are also preferred for planting, due to ease of access and high availability of forest reproductive material. European breeding programs yielding genetic material of high productivity and quality constitute currently the seed source of choice for several species and countries. Consolidation of trial data obtained across countries will allow the joint analysis that is urgently needed to draw solid conclusions, and will facilitate the development of ‘Universal-Response-Functions’ for the species of interest, rendering possible the identification of the genetic material suitable for global change. New provenance trial series that will test seed sources from the entire climatic range of the species, established in sites falling within and outside the environmental envelopes of their natural ranges, are urgently needed to pinpoint and understand the species-specific climate constraints, as well as to correlate functional traits to the seed origin and the environmental conditions of the test sites, so that the selection of suitable forest reproductive material of non-native tree species in the face of climate change can be feasible

    ConservePlants : an integrated approach to conservation of threatened plants for the 21st century

    Get PDF
    Even though plants represent an essential part of our lives offering exploitational, supporting and cultural services, we know very little about the biology of the rarest and most threatened plant species, and even less about their conservation status. Rapid changes in the environment and climate, today more pronounced than ever, affect their fitness and distribution causing rapid species declines, sometimes even before they had been discovered. Despite the high goals set by conservationists to protect native plants from further degradation and extinction, the initiatives for the conservation of threatened species in Europe are scattered and have not yielded the desired results. The main aim of this Action is to improve plant conservation in Europe through the establishment of a network of scientists and other stakeholders who deal with different aspects of plant conservation, from plant taxonomy, ecology, conservation genetics, conservation physiology and reproductive biology to protected area's managers, not forgetting social scientists, who are crucial when dealing with the general public.peer-reviewe
    corecore