13 research outputs found
Growth and Physiological Characteristics of Lettuce (Lactuca sativa L.) and Rocket (Eruca sativa Mill.) Plants Cultivated under Photovoltaic Panels
Energy demand of greenhouses is an important factor for their economics and photovoltaics can be considered an alternative solution to cover their electrical and heating needs. On the other hand, plants cultivated under different solar radiation intensities usually appear different physiological adaptations. The objective of this research was to investigate the effect of photovoltaic panels’ induced partial shading on growth and physiological characteristics of lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.) plants. Our results indicate that lettuce productivity and the corresponding photosynthetic rate were not affected under the photovoltaic cultivation in comparison with the reference one. On the other hand, the rocket cultivation was less productive and showed lower photosynthetic rate under photovoltaic panels than in the reference greenhouse. The different physiological response between lettuce and rocket seems to be associated with the effect of environmental factors such as solar radiation intensity, temperature and humidity apart from the possible inherent characteristics of each plant species
Regulated transparent insulation for greenhouse covers through the use of tailor-made bimodal nanoparticle formations
The controlled environment includes the greenhouse and its environmental control systems that are implemented to obtain the desired climate in order to produce a quality crop within a predictable and repeatable time schedule. Energy consumption for heating and cooling is the primary cost component in greenhouse operation. Heat losses due to both, conduction/convection through and radiation from the covers of the greenhouse represent the main causes of the unacceptably high energy consumption in today's greenhouses. The poor insulating properties of the materials presently used result in heat losses which may reach 50% of the overall energy consumption during the greenhouse operation. Also, most places have a summer climate that requires greenhouse cooling. Today, industry and environment requirements are always asking for better performing materials. For all the above reasons, a new polymer nanocomposite sheet cover has been developed through the use of uniform dispersions of highly porous granulated nanoparticles. In this work, the energy requirements of a greenhouse covered by a nanocomposite film were evaluated and the results revealed that it offers improved thermal and optic qualities.This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation, Project with Protocol No. ΤΕΧΝΟΛΟΓΙΑ/ΥΛΙΚ
Dye Sensitized Solar Cell (DSSC) greenhouse shading: new insights for solar radiation manipulation
Energy crisis is the worldwide main concern since fossil fuels are facing rapid depletion and its consumption contributes to the rise in the average global temperature. Among the challenges to be embedded lately with agricultural activities is to explore clean and renewable energy resources. Electrical energy generation via solar technology, or known also as photovoltaic (PV) technology, has been the most economical viable green resource, especially in tropical-based countries. The most notable problem revealed by conventional PV in greenhouses, however, is due to the antagonistic factor lying in both photovoltaic roofs and plants. As such, the divergence subsequently decreases the growth and productivity of the cultivated crops. The Dye Sensitized Solar Cell (DSSC) is thus of great importance to human as it possesses several attractive features. For instance, the fabrication of DSSC is cheap. It is also flexible, transparent, and sensitive to low light levels. Besides its easiness to be used in larger applications, makes DSSC an ideal candidate that could function greatly as energy buildings. This review article aims to explore the DSSC technology's potential and its effectiveness as a shading greenhouse. Further, indepth understanding on the uniqueness and advantages of this technology is thoroughly assessed. In comparison to conventional PV, the DSSC technology especially on solar radiation manipulation through the optimum choice of photosensitizer is well described. This paper also consolidates all the materials employed for DSSC fabrication for greenhouse shading. Detailing photosensitizer and light harvesting within PAR wavelength for sustenance growth have been provided. This technology has the potential to improve farming productivity while contribute to a significant reduction of CO2 emission