701 research outputs found

    Coseismic seafloor deformation in the trench region during the Mw8.8 Maule megathrust earthquake

    Get PDF
    The Mw 8.8 megathrust earthquake that occurred on 27 February 2010 offshore the Maule region of central Chile triggered a destructive tsunami. Whether the earthquake rupture extended to the shallow part of the plate boundary near the trench remains controversial. The up-dip limit of rupture during large subduction zone earthquakes has important implications for tsunami generation and for the rheological behavior of the sedimentary prism in accretionary margins. However, in general, the slip models derived from tsunami wave modeling and seismological data are poorly constrained by direct seafloor geodetic observations. We difference swath bathymetric data acquired across the trench in 2008, 2011 and 2012 and find ∼3-5 m of uplift of the seafloor landward of the deformation front, at the eastern edge of the trench. Modeling suggests this is compatible with slip extending seaward, at least, to within ∼6 km of the deformation front. After the Mw 9.0 Tohoku-oki earthquake, this result for the Maule earthquake represents only the second time that repeated bathymetric data has been used to detect the deformation following megathrust earthquakes, providing methodological guidelines for this relatively inexpensive way of obtaining seafloor geodetic data across subduction zone

    Carbon release from submarine seeps at the Costa Rica fore arc: implications for the volatile cycle at the Central America convergent margin

    Get PDF
    We report total dissolved inorganic carbon (DIC) abundances and isotope ratios, as well as helium isotope ratios (3He/4He), of cold seep fluids sampled at the Costa Rica fore arc in order to evaluate the extent of carbon loss from the submarine segment of the Central America convergent margin. Seep fluids were collected over a 12 month period at Mound 11, Mound 12, and Jaco Scar using copper tubing attached to submarine flux meters operating in continuous pumping mode. The fluids show minimum 3He/4He ratios of 1.3 RA (where RA is air 3He/4He), consistent with a small but discernable contribution of mantle-derived helium. At Mound 11, δ13C∑CO2 values between −23.9‰ and −11.6‰ indicate that DIC is predominantly derived from deep methanogenesis and is carried to the surface by fluids derived from sediments of the subducting slab. In contrast, at Mound 12, most of the ascending dissolved methane is oxidized due to lower flow rates, giving extremely low δ13C∑CO2 values ranging from −68.2‰ to −60.3‰. We estimate that the carbon flux (CO2 plus methane) through submarine fluid venting at the outer fore arc is 8.0 × 105 g C km−1 yr−1, which is virtually negligible compared to the total sedimentary carbon input to the margin and the output at the volcanic front. Unless there is a significant but hitherto unidentified carbon flux at the inner fore arc, the implication is that most of the carbon being subducted in Costa Rica must be transferred to the (deeper) mantle, i.e., beyond the depth of arc magma generation

    Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis

    Get PDF
    AbstractSkeletal muscle mitochondrial content and function are regulated by a number of specialized molecular pathways that remain to be fully defined. Although a number of proteins have been identified to be important for the maintenance of mitochondria in quiescent muscle, the requirement for these appears to decrease with the activation of multiple overlapping signaling events that are triggered by exercise. This makes exercise a valuable therapeutic tool for the treatment of mitochondrially based metabolic disorders. In this review, we summarize some of the traditional and more recently appreciated pathways that are involved in mitochondrial biogenesis in muscle, particularly during exercise

    Do UK universities communicate their brands effectively through their websites?

    Get PDF
    This paper attempts to explore the effectiveness of UK universities’ websites. The area of branding in higher education has received increasing academic investigation, but little work has researched how universities demonstrate their brand promises through their websites. The quest to differentiate through branding can be challenging in the university context, however. It is argued that those institutions that have a strong distinctive image will be in a better position to face a changing future. Employing a multistage methodology, the web pages of twenty UK universities were investigated by using a combination of content and multivariable analysis. Results indicated ‘traditional values’ such as teaching and research were often well communicated in terms of online brand but ‘emotional values’ like social responsibility and the universities’ environments were less consistently communicated, despite their increased topicality. It is therefore suggested that emotional values may offer a basis for possible future online differentiation

    Quantum Tunneling Effect in Oscillating Friedmann Cosmology

    Get PDF
    It is shown that the tunneling effect in quantum cosmology is possible not only at the very beginning or the very end of the evolution, but also at the moment of maximum expansion of the universe. A positive curvature expanding Friedmann universe changes its state of evolution spontaneously and completely, {\it without} any changes in the matter content, avoiding recollapse, and falling into oscillations between the nonzero values of the scale factor. On the other hand, an oscillating nonsingular universe can tunnel spontaneously to a recollapsing regime. The probability of such kind of tunneling is given explicitly. It is inversely related to the amount of nonrelativistic matter (dust), and grows from a certain fixed value to unity if the negative cosmological constant approaches zero.Comment: 18 pages Latex + 2 figures available by fax upon reques

    Identifying foundation species in North American forests using long‐term data on ant assemblage structure

    Get PDF
    Foundation species are locally abundant and uniquely control associated biodiversity, whereas dominant species are locally abundant but are thought to be replaceable in ecological systems. It is important to distinguish foundation from dominant species to direct conservation efforts. Long‐term studies that remove abundant species while measuring community dynamics have the potential to (1) aid in the identification of foundation vs. dominant species and, (2) once a foundation species is identified, determine how long its effects persist within a community after its loss. Long‐term data on ant assemblages within two canopy‐manipulation experiments—the Harvard Forest Hemlock Removal Experiment (HF‐HeRE) and the Black Rock Future of Oak Forests Experiment (BRF‐FOFE)—provide insights into how ant assemblages change and reassemble following the loss of Tsuga canadensis or Quercus spp. Previous research documented foundation species effects on ants in the HF‐HeRE for up to four years after T. canadensis loss. Six additional years of data at HF‐HeRE presented for the first time here show that removal of T. canadensis resulted in taxonomic and some measures of functional shifts in ant assemblages that persisted for ten years, further supporting the hypothesis that T. canadensis is a foundation species at Harvard Forest. In contrast, ant assemblages at BRF‐FOFE varied little regardless of whether oaks or other tree species were removed from the canopy, suggesting that Quercusspecies do not act as foundation species at Black Rock Forest. Deer and moose exclosures within each experiment also allowed for comparisons between effects on ants of foundation or dominant tree species relative to effects of large herbivores. At HF‐HeRE, effects of T. canadensis were stronger than effects of large herbivores on taxonomic and functional diversity of ant assemblages. At BRF‐FOFE, in contrast, effects of Quercus species were weaker than effects of large herbivores on ant taxonomic diversity and some measures of ant functional diversity. These findings illustrate the importance of distinguishing between the roles of irreplaceable foundation species and replaceable dominant ones in forested ecosystems along with other drivers of biodiversity (e.g., herbivory)

    Prediction of Evapotranspiration in a Mediterranean Region Using Basic Meteorological Variables

    Get PDF
    A critical need for farmers, particularly those in arid and semiarid areas is to have a reliable, accurate and reasonably accessible means of estimating the evapotranspiration rates of their crops to optimize their irrigation requirements. Evapotranspiration is a crucial process because of its influence on the precipitation that is returned to the atmosphere. The calculation of this variable often starts from the estimation of reference evapotranspiration, for which a variety of methods have been developed. However, these methods are very complex either theoretically and/or because of the large amount of parameters on which they are based, which makes the development of a simple and reliable methodology for the prediction of this variable important. This research combined three concepts such as cluster analysis, multiple linear regression (MLR), and Voronoi diagrams to achieve that end. Cluster analysis divided the study area into groups based on its weather characteristics, whose locations were then delimited by drawing the Voronoi regions associated with them. Regression equations were built to predict daily reference evapotranspiration in each cluster using basic climate variables produced in forecasts made by meteorological agencies. Finally, the Voronoi diagrams were used again to regionalize the crop coefficients and calculate evapotranspiration from the values of reference evapotranspiration derived from the regression models. These operations were applied to the Valencian region (Spain), a Mediterranean area which is partly semiarid and for which evapotranspiration is a critical issue. The results demonstrated the usefulness and accuracy of the methodology to predict the water demands of crops and hence enable farmers to plan their irrigation needs.This paper was possible thanks to the research project RHIVU (Ref. BIA2012-32463), financed by the Spanish Ministry of Economy and Competitiveness with funds from the State General Budget (PGE) and the European Regional Development Fund (ERDF). The authors also wish to express their gratitude to the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA) for providing the data necessary to develop this study

    A Comparative Study of National Infrastructures for Digital (Open) Educational Resources in Higher Education

    Get PDF
    This paper reports on the first stage of an international comparative study for the project “Digital educational architectures: Open learning resources in distributed learning infrastructures–EduArc”, funded by the German Federal Ministry of Education and Research. This study reviews the situation of digital educational resources (or (O)ER) framed within the digital transformation of ten different Higher Education (HE) systems (Australia, Canada, China, Germany, Japan, South Africa, South Korea, Spain, Turkey and the United States). Following a comparative case study approach, we investigated issues related to the existence of policies, quality assurance mechanisms and measures for the promotion of change in supporting infrastructure development for (O)ER at the national level in HE in the different countries. The results of this mainly documentary research highlight differences and similarities, which are largely due to variations in these countries’ political structure organisation. The discussion and conclusion point at the importance of understanding each country’s context and culture, in order to understand the differences between them, as well as the challenges they face
    corecore