163 research outputs found
Deficiency in mRNA splicing in a cytochrome c mutant of neurospora crassa
Molecular cloning and characterization of cytochrome c cDNA clones of Neurospora crassa wild-type (74A) and a cytochrome c-deficient mutant (cyc1-1) are described. Southern blot analysis of genomic DNA indicates that only one cytochrome c gene exists in the N. crassa genome. The cDNA sequence of the wild-type cytochrome c confirmed the previously determined protein sequence. Sequence analysis of the cyc1-1 cDNA for cytochrome c revealed the presence of a larger open reading frame, owing to the presence of an unspliced intron in the 3' end of the coding region. Splicing of this intron is obviously prevented due to the presence of two base exchanges in the highly conserved intron consensus sequences. Consequently, cyc1-1 synthesizes apocytochrome c with an altered carboxy terminus, 19 amino acids longer than the wild-type cytochrome c, with the final 27 amino acids being of an unrelated sequence. This alteration in the carboxy terminus renders the apocytochrome c incompetent for binding to mitochondria and, consequently, import into mitochondria. Thus, unlike other mitochondrial precursor proteins, where it has been demonstrated that the amino terminus alone is sufficient to target the protein to the mitochondria, an intact carboxy terminus is required for efficient import of apocytochrome c into mitochondria. This is independent confirmation for the view that the import pathway of cytochrome c is unique with respect to all other mitochondrial proteins studied to date
The carboxyl-terminal two-thirds of the ADP/ATP carrier polypeptide contains sufficient information to direct translocation into mitochondria
The precursor of the mitochondrial inner membrane protein ADP/ATP carrier is cytoplasmically synthesized without an amino-terminal peptide extension. We constructed a truncated precursor lacking the 103 amino acids from the amino terminus (about a third of the protein). Import of the truncated precursor into mitochondria showed the import characteristics of the authentic precursor, including nucleoside triphosphate dependence, requirement for a protease-sensitive component on the mitochondrial surface, two-step specific binding to the outer membrane, and membrane potential-dependent translocation into the inner membrane. We conclude that, in contrast to all other mitochondrial precursor proteins studied so far, domains of the ADP/ATP carrier distant from the amino terminus can carry specific targeting information for transport into mitochondria
Role of ATP in mitochondrial protein import
The role of nucleoside triphosphates (NTPs) in the import of porin into the mitochondrial outer membrane was investigated with two forms of the porin precursor: the in vitro synthesized biosynthetic precursor (bs- porin) and a water-soluble form of porin (ws-porin) obtained by subjecting the membrane-derived porin to an acid-base treatment (exposure to trichloroacetic acid, followed by alkali and rapid neutralization). The import of ws-porin into mitochondria did not require NTPs, whereas the import of bs-porin required NTPs. In other characteristics, such as binding to a specific receptor protein on the mitochondrial surface, two-step insertion into the outer membrane, and formation of specific membrane channels, ws-porin was indistinguishable from bs-porin. Thus, the acid-base treatment applied in the preparation of ws-porin can substitute for the NTP-requiring step in mitochondrial protein import. We conclude that NTPs are required for unfolding mitochondrial precursor proteins ("translocation competent folding")
Mitochondrial protein import
Transport of nuclear-encoded precursor proteins into mitochondria includes proteolytic cleavage of aminoterminal targeting sequences in the mitochondrial matrix. We have isolated the processing activity from Neurospora crassa. The final preparation (enriched ca. 10,000-fold over cell extracts) consists of two proteins, the matrix processing peptidase (MPP, 57 kd) and a processing enhancing protein (PEP, 52 kd). The two components were isolated as monomers. PEP is about 15-fold more abundant in mitochondria than MPP. It is partly associated with the inner membrane, while MPP is soluble in the matrix. MPP alone has a low processing activity whereas PEP alone has no apparent activity. Upon recombining both, full processing activity is restored. Our data indicate that MPP contains the catalytic site and that PEP has an enhancing function. The mitochondrial processing enzyme appears to represent a new type of “signal peptidase,” different from the bacterial leader peptidase and the signal peptidase of the endoplasmic reticulum
Protein folding causes an arrest of preprotein translocation into mitochondria in vivo
With vital yeast cells, a hybrid protein consisting of the amino- terminal third of the precursor to cytochrome b2 and of the entire dihydrofolate reductase was arrested on the import pathway into mitochondria. Accumulation of the protein in the mitochondrial membranes was achieved by inducing a stable tertiary structure of the dihydrofolate reductase domain. Thereby, three salient features of mitochondrial protein uptake in vivo were demonstrated: its posttranslational character; the requirement for unfolding of precursors; and import through translocation contact sites. The permanent occupation of translocation sites by the fusion protein inhibited the import of other precursors; it did, however, not lead to leakage of mitochondrial ions, implying the existence of a channel that is sealed around the membrane spanning polypeptide segment
Mitochondrial porin of Neurospora crassa
cDNA encoding porin of Neurospora crassa, the major protein component of the outer mitochondrial membrane, was isolated and the nucleotide sequence was determined. The deduced protein sequence consists of 283 amino acids (29,979 daltons) and shows sequence homology of around 43% to yeast porin; however, no significant homology to bacterial porins was apparent. According to secondary structure predictions, mitochondrial porin consists mainly of membrane-spanning sided beta-sheets. Porin was efficiently synthesized in vitro from the cDNA; this allowed us to study in detail its import into mitochondria. Thereby, three characteristics of import were defined: (i) import depended on the presence of nucleoside triphosphates; (ii) involvement of a proteinaceous receptor-like component on the surface of the mitochondria was demonstrated; (iii) insertion into the outer membrane was resolved into at least two distinct steps: specific binding to high-affinity sites and subsequent assembly to the mature form
Cyclosporin A-binding protein (cyclophilin) of Neurospora crassa
Cyclophilin (cyclosporin A-binding protein) has a dual localization in the mitochondria and in the cytosol of Neurospora crassa. The two forms are encoded by a single gene which is transcribed into mRNAs having different lengths and 5' termini (approximately 1 and 0.8 kilobases). The shorter mRNA specifies the cytosolic protein consisting of 179 amino acids. The longer mRNA is translated into a precursor polypeptide with an amino-terminal extension of 44 amino acids which is cleaved in two steps upon entry into the mitochondrial matrix. Neurospora cyclophilin shows about 60% sequence homology to human and bovine cyclophilins
Fault Monitoring in Passive Optical Networks using Machine Learning Techniques
Passive optical network (PON) systems are vulnerable to a variety of
failures, including fiber cuts and optical network unit (ONU)
transmitter/receiver failures. Any service interruption caused by a fiber cut
can result in huge financial losses for service providers or operators.
Identifying the faulty ONU becomes difficult in the case of nearly equidistant
branch terminations because the reflections from the branches overlap, making
it difficult to distinguish the faulty branch given the global backscattering
signal. With increasing network size, the complexity of fault monitoring in PON
systems increases, resulting in less reliable monitoring. To address these
challenges, we propose in this paper various machine learning (ML) approaches
for fault monitoring in PON systems, and we validate them using experimental
optical time domain reflectometry (OTDR) data.Comment: ICTON 202
A nuclear RNA-binding cyclophilin in human T cells
AbstractCyclophilins (CyPs) are binding proteins for the immunosuppressive drug cyclosporin A (CsA). CyPs are evolutionarily highly conserved proteins present in both pro-and eukaryotes as well as in different subcellular locations. Cyps possess enzymatic activity, namely peptidyl-prolyl cis-trans isomerase (PPIase) activity; CyPs are involved in cellular protein folding and protein interactions. To date, only cyclosporins and proteins are known to interact with CyPs. Here we describe a novel nuclear cyclophilin (hCyP33) from human T cells with an additional RNA-binding domain. This combines for the first time RNA binding and protein folding in one protein
- …