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IMPORT OF CYTOCHROMES b2 AND 4 INTO MITOCHONDRIA IS DEPENDENT

ON BOTH MEMBRANE POTENTIAL AND NUCLEOSIDE TRIPHOSPHATES

Franz-Ulrich Hartl, Joachim Ostermann, Nikolaus Pfanner,
Maximilian Tropschug, Bernard Guiard* and Walter Neupert

Institut filir Physiologische Chemie, Goethestr. 33

8000 Miinchen 2, FRG, and

* Centre de Genetique Moleculaire, 91190 Gif-sur-Yvette
France

SUMMARY

Import of precursors of cytochromes b, and ¢, into mito-
chondria requires a mitochondrial membrane potential. We show here that in
addition to AY, nucleoside triphosphates (NTPs) are necessary for protein
translocation. At low concentrations of NTPs, intermediate-sized cytochrome
b, was accumulated spanning the outer and inner membranes at contact
sites. For complete translocation into mitochondria, higher concentrations
of NTPs were necessary. We conclude that different levels of NTPs are
required for distinct steps in the import pathway.

INTRODUCTION

Most mitochondrial proteins are coded for by the nucleus and are
synthesized as precursors on cytoplasmic polysomes. Transport of proteins
into mitochondria can be subdivided into several steps (for reviews see:
Harmey and Neupert, 1985; Pfanner and Neupert, 1987; Hartl et al., 1987):
(i) specific interaction with receptors on the mitochondrial surface; (ii)
transport into mitochondria at translocation contact sites between outer
and inner membranes; (iii) processing of precursors having N-terminal
extensions by the processing peptidase in the matrix; (iv) additional
modifications, including covalent or non-covalent attachment of cofactors
or, in certain cases, a second proteolytic processing step; and (v)
assembly into active supramolecular protein complexes.

Transport into or translocation across the inner membrane is dependent
on an energized inner membrane (Hallermayer and Neupert, 1976; Nelson and
Schatz, 1979; Zimmermann et al., 19871; Schleyer et al., 1982; Gasser et
al., 1982; Kolanski et al., 1982). Energy is required in the form of the
electrical component AY of total protonmotive force (Pfanner and Neupert,
1985). For long, however, it could not be decided whether high energy
phosphate compounds, such as ATP, are necessary in addition toAW¥. Indeed,
this was recently shown for the import of the B8 subunit of
F F, -ATPase (F.B8) (Pfanner and Neupert, 1986), the ADP/ATP-
translocator of the inner membrane, and fusion proteins between
-ATPase subunit 9 and dihydrofolate reductase (Pfanner et al.,

FF
1887).

In the present report we investigated whether the import of
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cytochromes b, and c, was dependent on NTPs. Cytochrome b, is a
soluble compofient of the intermembrane space (Daum et al.) 1982a).
Cytochrome c, is anchored to the inner membrane but contains a large
hydrophilic &omain which protrudes into the intermembrane space (Li et al.,
1981). Compared to B subunit of F F_-ATPase their import and
sorting pathways are more complex in that both precursor proteins are
proteolytically processed in two steps (Daum et al., 1982b; Ohashi et al.,
1982; Teintze et al., 1982). The first processing step is performed by the
matrix peptidase, i.e. precursors have to be translocated either completely
or at least partially across the inner membrane. The second processing
event occurs at the outer surface of the inner membrane by a so far
uncharacterized protease(s) (Pratje and Guiard, 1986). On addition both
proteins have to acquire heme, which is covalently attached in case of
cytochrome c,.

Selective and independent manipulation of NTP levels and the membrane
potential showed that import of cytochromes b, and c, required both
NTPs andAW¥. Interestingly, at low levels of ﬁTPs precursors were only
partially translocated into mitochondria: they accumulated in translocation
contact sites (Schleyer and Neupert, 1985).

MATERIALS AND METHODS

Growth of Neurospora crassa (wild type 74A) (Schleyer et al., 1982)
and isolation of mitochondria by Percoll (Pharmacia) density gradient
centrifugation was done as described (Hartl et al., 1986). Yeast cells of
wild type Saccharomyces cerevisiae (D273-10B) were grown on 2% lactate and
mitochondria were isolated according to Daum et al. (1982a). Mitochondria
were finally suspended in SEM buffer (250 mM sucrose, 1 mM EDTA, 10 mM
MOPS/KOH, pH 7.2) at a protein concentration of 2.5 mg/ml.

Precursor proteins were synthesized by coupled transcription/
translation. For cytochrome c,, a full length cDNA was isolated from a
N. crassa library and cloned into pGEM4. For cytochrome b2, the genomic
clone described previously (Guiard, 1985) was used.
Transcription/translation of the cloned sequences followed the methods of
Krieg and Melton (1984) and Stueber et al. (1984), respectively.
Postribosomal supernatants were prepared and supplemented as published
(Schleyer et al., 1982).

Labelled reticulocyte lysates and isolated mitochondria were treated
with apyrase (Sigma, grade VIII) essentially as described before (Pfanner
and Neupert, 1986). Afterwards reticulocyte lysates were cooled to 0°C and
diluted with BSA buffer (250 mM sucrose, 80 mM KCl, 5 mM MgClz, 10 mM
MOPS, 3% (w/v) BSA, pH 7.2). Antimycin A, oligomycin or valinGmycin (8 uM,
20 uM and 1 uM, respectively) were added from 100-fold concentrated stock
solutions in ethanol when indicated. Mixtures for import into N. crassa
mitochondria contained 8 mM potassium ascorbate and 0.2 mM N,N,N',N'-
tetramethylphenylenediamine (TMPD) as an energy source, whereas mixtures
for yeast mitochondria included 20 mM potassium succinate. Then
mitochondria (50 ug of protein) were added. In order to supplement NTPs,
either ATP or GTP (8 mM final concentration) were added from 200 mM stock
solutions in water. For neutralization sufficient amounts of 1 M MOPS/NaOH,
pH 7.2, were included. Incubation was for 30 min at 25°C in a total volume
of 100 ul. Mitochondria were then reisolated by centrifugation (15 min
27,000 x g), resuspended in SEM buffer and treated with proteinase K (15
ug/ml final concentration) as described (Hartl et al., 1986). Reisolated
mitochondria were lysed in SDS sample buffer. SDS polyacrylamide
electrophoresis and fluorography were carried out according to published
methods (Laemmli, 1970; Hartl et al., 1986).
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RESULTS

Import of cytochromes b2 and c, requires nucleoside
triphosphates 35
Reticulocyte lysates containing the S-methionine labelled
precursor of cytochrome b, and freshly isolated yeast mitochondria were
pretreated with different concentrations of apyrase, an adenosine 5'-
triphosphatase and adenosine 5'-diphosphatase which caused rapid
depletion of endogenous ATP and ADP. Mitochondria and reticulocyte lysate
were mixed in the presence of succinate (as a respiratory substrate) and
oligomycin (which inhibits the F F,-ATPase, Wikstrom and Krab,
1982). The latter was included 8 prevent reduction of the mitochondrial
membrane potential by ATPase activity. Following incubation for 30 min at
25°C, the samples were treated with proteinase K to digest cytochrome
b, that had not been.imported into mitochondria. Then mitochondria were
réisolated and dissolved in SDS-containing buffer for subsequent

Apyrase  ++ -+ -

Fig. 1. Import of cytochrome b, into yeast mitochondria is inhibited
by apyrase treatment.
Reticulocyte lysates containing labelled precursor of cytochrome
b, were incubated for 15 min at 30°C and 15 min at 25°C
with apyrase: reactions 1 and 3 received 1 and 0.25 U/ml,
respectively; reactions 2 and 4 received corresponding amounts
of inactivated apyrase. Mitochondria were added to the lysate in
presence of succinate and oligomycin. Incubation for import was
for 30 min at 25°C. Afterwards the samples were cooled to 0°C
and diluted 1:2 with SEM. Proteinase K treatment was then
performed (30 min at 0°C). Protease activity was stopped by
adding PMSF to 1 mM. Then mitochondria were reisolated by
centrifugation and dissociated in SDS-containing buffer. The
samples were analyzed by electrophoresis and fluorography.
Abbreviations: i, intermediate; m, mature cytochrome b2.

electrophoresis and fluorography. A fluorograph of the dried gel is shown
in Fig.1. Control samples received an apyrase preparation which had been
inactivated by heating to 95°C for 10 min. In these reactions, cytochrome
b, precursor was imported into a protease protected location and

processed to the mature form. Besides mature cytochrome b,, a small
quantity of the intermediate sized form (about 20% of totdl) was observed
which was also protected against externally added protease (Fig.1, lanes 2
and 4). When lysate and mitochondria had been pretreated with apyrase,
import was clearly diminished (Fig.1, lanes 1 and 3). Apyrase per se did
reduce neither the protease resistance of endogenous mitochondrial proteins
nor the amount of precursor proteins in the reticulocyte lysate (Pfanner
and Neupert, 1986; Pfanner et al., 1987). We conclude that pretreatment
with apyrase causes inhibition of import of cytochrome b2 into
mitochondria.
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To test whether the apyrase effect was due to depletion of NTPs,
experiments were performed where ATP or GTP were included during import
(Fig.2).

Apyrase ++ ++ - + + + - -
Av

+ + + o+ 4+ + + + -

AP GIP AP GIP ATP

Fig. 2. Import of cytochrome b, from apyrase treated reticulocyte
lysate is restored by addition of ATP or GTP.
Reticulocyte lysates and mitochondria were incubated with the
following concentrations of apyrase: reactions 1- 3, 4 U/ml;
reactions 5-7, 1 U/ml; reaction 4 received 4 U inactivated
apyrase/ml and reactions 8 and 9 1 U/ml. Import and protease
treatment was performed as described in legend to Fig.1, except
that in reactions 2,6 and 9, 8 mM ATP and in reactions 3 and 7,
8 mM GTP were added during import. In reaction 9, 1 uM
valinomycin was added prior to ATP. A fluorograph of the dried
gel is shown.
Abbreviations as in Fig.1. p, precursor of cytochrome b2.

Under these conditions the import of cytochrome b, could be fully

restored (Fig.2, lanes 2,3 and 6,7). This import, however, was completely

abolished when valinomycin plus potassium ions were added to destroy the

membrane potential across the inner membrane (Fig.2, lane 9). In this case,

addition of ATP did not restore import.

The same result was obtained with import of cytochrome c, into
mitochondria of N. crassa. Experimental conditions were essen%ially as
described for import of cytochrome b,, except that ascorbate/TMPD was
used to establish a membrane potentizl and NADH was included, which is
required for the second maturation step of cytochrome c, (Schleyer and
Neupert, 1985, see accompanying article by Nicholson et al.). A fluorograph
corresponding to the experimental design presented in Fig.2 was quantified
by densitometry (Fig.3).

Again apyrase treatment drastically reduced import and processing
(Fig.3, lanes 1,5) which could be restored by addition of ATP or GTP
(Fig.3, lanes 2,3,6,7). Import was completely blocked after inhibition of
the membrane potential with antimycin A and oligomycin and could not be
restored by including ATP in the reaction (Fig.3, lane 9). Consequently,
the presence of NTPs and a membrane potential are two separate
requirements. NTPs cannot substitute for the requirement of Ay. At present,
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however, it is unknown which form of high energy phosphate is actually
needed since nucleoside phosphate kinases present in mitochondria can lead
to formation of various nucleoside triphosphates.

!
o
o

Imported Cytochrome ¢
(% of controls)

0.

12 4 6 7

Apyrase «+ e+ es - . .
Ay o o+ e e . . -
ATP GTP ATP GTP ATF

Fig. 3. Import of cytochrome c, is inhibited by apyrase treatment
and restored by ATP or GTP.
The experimental design was essentially as described in the
legend to Fig.2, except that mitochondria from N. crassa were
used and import was performed in the presence of ascorbate/TMPD
and NADH instead of succinate. Antimycin A was included in
addition to oligomycin. Formation of mature cytochrome c
was quantified by densitometry of the fluorograph. The amount
of mature c, formed in controls (inactivated apyrase) was
set at 1007%.

Intermediate-sized cytochrome b, spanning outer and inner membranes
at contact sites can be accumulated at low levels of NTPs

For precursors of B subunit of F F_-ATPase, cytochrome c
and the Fe/S-protein of complex III, 1t has been previously shown that
import into mitochondria performed at lower temperatures results in the
formation of so called "contact site intermediates" (Schleyer and Neupert,
1985; Hartl et al., 1986). Such an intermediate is characterized as
follows: the N-terminal presequence of the precursor has been translocated
across both membranes in a Ay dependent manner and is cleaved off by the
processing peptidase in the matrix. A large part of the polypeptide,
however,is still outside the mitochondrion where it can be digested by
externally added protease. It follows that these features can be only
fulfilled at regions where outer and inner membranes are close enough
together to be spanned by a single polypeptide chain.

Experiments with apyrase pretreatment indicated that after depletion
of ATP the formation of intermediate-sized cytochrome b, was not
reduced to the same extent as was processing to the matiire form. In
contrast to mature b,, more than 857 of which were protease-resistent,
this intermediate was largely sensitive to externally added protease. This
effect could be clearly demonstrated when apyrase concentrations were
titrated over a wider range (0 to 100 U apyrase/ml of lysate or
mitochondrial suspension). After import, one half of each reaction was
treated with proteinase K. Following electrophoresis and fluorography the
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amounts of intermediate-sized b2 formed were quantified by densitometry
(Fig. 4).
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Fig 4. Intermediate sized cytochrome b2 is accumulated in contact
sites at low levels of NTPs.
Reticulocyte lysates and mitochondria were incubated with apyrase
(0-100 U/ml). Controls received corresponding amounts of
inactivated apyrase. Import and protease treatment were performed
as described in the legend to Fig.1, except that only half of
each sample received protease. Formation of intermediate
cytochrome b, was quantified by densitometry of the
fluorograph. The amount of intermediate b2 formed in
controls (inactivated apyrase) was set at”100%.

At apyrase concentrations between 4 and 20 U/ml, the formation of
intermediate b, was reduced by 10 to 40% compared to controls that had
received inactlvated apyrase. Most of this intermediate sized b,,
however, was digested by externally added proteinase K thus ful%illing the
criteria for a contact site intermediate described above. Only with very
low concentrations of apyrase was intermediate-sized b, protected

against externally added protease. Within a narrow range of 1 to 4 U
apyrase/ml, protease protection decreased from 95 to 30% indicating that
only above a distinct level of NTPs import into protease protected
position did take place. When the membrane potential was dissipated, no
processing to intermediate b, was observed. We conclude that partial
translocation of the precursor can occur at low levels of NTPs; this step
depends on the potential across the inner membrane. For complete
translocation, however, higher levels of NTPs are required.

DISCUSSION

The import of precursors of cytochromes b, and 4 into
mitochondria needs NTPs in addition to V. At fow levels of NTPs, a
translocational intermediate of cytochrome b2 could be accumulated in

contact sites.
Owing to the presence of nucleoside phosphate kinases it is unclear so

far which form of high energy phosphate compound (eg. ATP or GTP) is the
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direct energy source. Non-hydrolyzable ATP-analogues could not restore
import after depletion of NTPs with apyrase (Pfanner and Neupert, 1986)
indicating that the mechanism of action of NTPs involves the hydrolysis of
high energy phosphate bonds. The dependence of protein import into
mitochondria on NTPs seems to be a general phenomenon. Similar effects have
been recently observed with the precursors of B subunit of F F1-

ATPase (Pfanner and Neupert, 1986) and the ADP/ATP—translocagor (Pfanner
et al., 1987). Interestingly, the insertion of porin into the outer
membrane (which is independent of 8Y) also seems to need NTPs (Kleene et
al., in preparation).

What could be the role of NTPs? Previous results had already suggested
that NTPs modify the conformation of cytosolic mitochondrial precursor
proteins (Pfanner et al., 1987). Eilers and Schatz (1986) have demonstrated
that lack of tertiary structure is a prerequisite for protein import into
mitochondria. Taking the resistance against digestion by protease as a
measure for the degree of tertiary structure it could be shown that the
presence of NTPs results in the unfolding of precursor molecules (Pfanner
et al., 1987) thus rendering them competent for translocation across the
mitochondrial membranes. In the present study, AY¥ dependent partial
translocation of the precursor of cytochrome b, was possible at very
low concentrations of NTPs resulting in an intérmediate reaching into the
matrix with its aminoterminus but having a large part of the molecule still
outside the mitochondrion. Complete translocation into a protease protected
position was then achieved by adding ATP or GTP and was independent of QY
(Hartl and Neupert, unpublished). These findings are consistent with the
idea that the membrane potential is only necessary for the translocation of
the aminoterminal part of the precursor across the inner membrane. It is
assumed to exert an electrophoretic effect on the positive charges
contained in the presequence (Pfanner and Neupert, 1985; Roise et al.,
1986). Complete translocation of the precursor across both membranes is
only possible when the polypeptide is kept in an unfolded state, the energy
source for the unfolding reaction being NTPs. Specific binding of the
precursor to receptors on the surface of mitochondria, insertion into and
partial translocation across the mitochondrial membranes is possible at
very low levels of NTPs; thus, it seems likely that the presequence folds
independently of the mature part of the precursor and can be recognized by
the mitochondrial import machinery. On the other hand it cannot be excluded
that besides the unfolding of cytosolic precursors the role of NTPs
includes functions such as the modification of mitochondrial membranes e.g.
by phosphorylation of mitochondrial transport components.

The existence of "unfolding proteins" in the cytosol has been proposed
(Rothman and Kornberg, 1986; Zimmermann and Meyer, 1986) that could bind to
precursor proteins and whose action would involve the hydrolysis of high
energy phosphate bonds. The role of NTPs in preventing (mis)folding of
precursor proteins into an import incompetent conformation could explain
the general importance of NTIPs for the translocation of proteins across
membranes in both procaryotic and eucaryotic systems (for review see
Zimmermann and Meyer, 1986).
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