57 research outputs found

    Assessment of the Impact of Increased Solar-Ultraviolet Radiation of Seagress

    Get PDF
    An early concern in the planning of the Space Shuttle Program was the loss of atmospheric ozone due to repeated Shuttle flights and a resultant increase in penetrant ultraviolet radiation. Our research group has examined the effects of an increase in this radiation (UV-B, 290- 315 nm) on three marine angiosperms (Halophila engelmannii Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kutz) important to shallow marine and estuarine ecosystems. The photosynthetic tolerance of each seagrass to UV-B and mechanisms which might prevent or reverse damage were investigated. The data show little effect by current environmental levels of UV-B and suggest the capacity to adapt to an increased UV-B flux by various mechanisms in the different species: photorepair, flavonoid synthesis, chloroplast clumping, and epiphytic shielding

    Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling

    Get PDF
    NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand DES capabilities to address KSC's planning needs

    Biogeochemical Analysis of Ancient Pacific Cod Bone Suggests Hg Bioaccumulation was Linked to Paleo Sea Level Rise and Climate Change

    Get PDF
    Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg) and δ13C/δ15N ratios in the bone collagen of archeologically recovered Pacific Cod (Gadus macrocephalus) bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers

    Geochemistry of vent fluid particles formed during initial hydrothermal fluid–seawater mixing along the Mid-Atlantic Ridge

    Get PDF
    We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0–99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S < 1) compared to Logatchev I result in a larger amount of particles precipitated per liter fluid and the occurrence of elemental sulphur at 5°S, while at Logatchev I Fe oxides occur in larger amounts. Systematic trends with dilution degree of the fluid include the precipitation of large amounts of Cu sulphides at a low dilution and a pronounced drop with increasing dilution. Moreover, Fe (sulphides or oxides) precipitation increases with dilution of the vent fluid by seawater. Geochemical reaction path modeling of hydrothermal fluid–seawater mixing and conductive cooling indicates that Cu sulphide formation at Logatchev I and 5°S mainly occurs at high temperatures and low dilution of the hydrothermal fluid by seawater. Iron precipitation is enhanced at higher fluid dilution, and the different amounts of minerals forming at 5°S and Logatchev I are thermodynamically controlled. Larger total amounts of minerals and larger amounts of sulphide precipitate during the mixing path when compared to the cooling path. Differences between model and field observations do occur and are attributable to closed system modeling, to kinetic influences and possibly to organic constituents of the hydrothermal fluids not accounted for by the model

    A modeling assessment of the role of reversible scavenging in controlling oceanic dissolved Cu and Zn distributions

    Get PDF
    The balance of processes that control elemental distributions in the modern oceans is important in understanding both their internal recycling and the rate and nature of their eventual output to sediment. Here we seek to evaluate the likely controls on the vertical profiles of Cu and Zn. Though the concentrations of both Cu and Zn increase with depth, Cu increases in a more linear fashion than Zn, which exhibits a typical "nutrient-type" profile. Both elements are bioessential, and biological uptake and regeneration has often been cited as an important process in controlling their vertical distribution. In this study, we investigate the likely importance of another key vertical process, that of passive scavenging on sinking particles, via a simple one-dimensional model of reversible scavenging. We find that, despite the absence of lateral or vertical water advection, mixing, diffusion, or biological uptake, our reversible scavenging model is very successful in replicating dissolved Cu concentration profiles on a range of geographic scales. We provide preliminary constraints on the scavenging coefficients for Cu for a spectrum of particle types (calcium carbonate, opal, particulate organic carbon, and dust) while emphasizing the fit of the shape of the modeled profile to that of the tracer data. In contrast to Cu, and reaffirming the belief that Zn behaves as a true micronutrient, the scavenging model is a poor match to the shape of oceanic Zn profiles. Modeling a single vertical process simultaneously highlights the importance of lateral advection in generating high Zn concentrations in the deep Pacific. Key Points A 1-D reversible scavenging model is applied to oceanic [Cu] and [Zn]Dissolved Cu is well described by the process of reversible scavengingDissolved Zn is not, reflecting its behaviour as a true nutrient-type element ©2013. American Geophysical Union. All Rights Reserved

    Evidence for intense REE scavenging at cold seeps from the Niger Delta margin

    No full text
    International audienceFor many trace elements, continental margins are the location of intense exchange processes between sediment and seawater, which control their distribution in the water column, but have yet to be fully understood. In this study, we have investigated the impact of fluid seepage at cold seeps on the marine cycle of neodymium. We determined dissolved and total dissolvable (TD) concentrations for REE and well-established tracers of fluid seepage (CH4, TDFe, TDMn), and Nd isotopic compositions in seawater samples collected above cold seeps and a reference site (i.e. away from any fluid venting area) from the Niger Delta margin. We also analyzed cold seep authigenic phases and various core-top sediment fractions (pore water, detrital component, easily leachable phases, uncleaned foraminifera) recovered near the hydrocast stations. Methane, TDFe and TDMn concentrations clearly indicate active fluid venting at the studied seeps, with plumes rising up to about 100 m above the seafloor. Depth profiles show pronounced REE enrichments in the non-filtered samples (TD concentrations) within plumes, whereas filtered samples (dissolved concentrations) exhibit slight REE depletion in plumes relative to the overlying water column and display typical seawater REE patterns. These results suggest that the net flux of REE emitted into seawater at cold seeps is controlled by the presence of particulate phases, most probably Fe-Mn oxyhydroxides associated to resuspended sediments. At the reference site, however, our data reveal significant enrichment for dissolved REE in bottom waters, that clearly relates to diffusive benthic fluxes from surface sediments. Neodymium isotopic ratios measured in the water column range from εNd ~−15.7 to − 10.4. Evidence that the εNd values for Antarctic Intermediate waters (AAIW) differed from those reported for the same water mass at open ocean settings shows that sediment/water interactions take place in the Gulf of Guinea. At each site, however, the bottom water εNd signature generally differs from that for cold seep minerals, easily leachable sediment phases, and detrital fractions from local sediments, ruling out the possibility that seepage of methane-rich fluids and sediment dissolution act as a substantial source of dissolved Nd to seawater in the Gulf of Guinea. Taken together, our data hence suggest that co-precipitation of Fe-Mn oxyhydroxide phases in sub-surface sediments leads to quantitative scavenging of dissolved REE at cold seeps, preventing their emission into bottom waters. Most probably, it is likely that diffusion from suboxic surface sediments dominates the exchange processes affecting the marine Nd cycle at the Niger Delta margin

    Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows

    Get PDF
    There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs

    Finding Important Independent Variables Through Screening Designs: A Comparison Of Methods

    No full text
    Once a simulation model is developed, designed experiments may be employed to efficiently optimize the system. Designed experiments are used on `real\u27 production systems as well. The first step is to screen for important independent variables. Several screening methods are compared and contrasted in terms of efficiency, effectiveness, and robustness. These screening methods range from the classical factorial designs and two-stage group screening to new, more novel designs including sequential bifurcation (SB) and iterated fractional factorial designs (IFFD). Conditions for the use of the methods are provided along with references on how to use them

    An Overview Of Newer, Advanced Screening Methods For The Initial Phase In An Experimental Design

    No full text
    Screening is the first phase of an experimental study on systems and simulation models. Its purpose is to eliminate negligible factors so that efforts may be concentrated upon just the important ones. Successfully screening more than about 20 or 30 factors has been investigated only in the past 10 or 15 years with most improvements in the past 5 years. A handful of alternative methods including sequential bifurcation, iterated fractional factorial designs, and the Trocine Screening Procedure are described and evaluative and comparative results are presented
    • …
    corecore