236 research outputs found

    Evidence accumulation rate moderates the relationship between enriched environment exposure and age-related response speed declines

    Get PDF
    Older adults exposed to enriched environments (EEs) maintain relatively higher levels of cognitive function, even in the face of compromised markers of brain health. Response speed (RS) is often used as a simple proxy to measure the preservation of global cognitive function in older adults. However, it is unknown which specific selection, decision, and/or motor processes provide the most specific indices of neurocognitive health. Here, using a simple decision task with electroencephalography (EEG), we found that the efficiency with which an individual accumulates sensory evidence was a critical determinant of the extent to which RS was preserved in older adults (63% female, 37% male). Moreover, the mitigating influence of EE on age-related RS declines was most pronounced when evidence accumulation rates were shallowest. These results suggest that the phenomenon of cognitive reserve, whereby high EE individuals can better tolerate suboptimal brain health to facilitate the preservation of cognitive function, is not just applicable to neuroanatomical indicators of brain aging but can be observed in markers of neurophysiology. Our results suggest that EEG metrics of evidence accumulation may index neurocognitive vulnerability of the aging brain. Significance Statement Response speed in older adults is closely linked with trajectories of cognitive aging. Here, by recording brain activity while individuals perform a simple computer task, we identify a neural metric that is a critical determinant of response speed. Older adults exposed to greater cognitive and social stimulation throughout a lifetime could maintain faster responding, even when this neural metric was impaired. This work suggests EEG is a useful technique for interrogating how a lifetime of stimulation benefits brain health in aging

    A qualitative examination of apathy and physical activity in Huntington's and Parkinson's disease

    Get PDF
    Aim: In Huntington's disease (HD) and Parkinson's disease (PD), apathy is a frequently cited barrier to participation in physical activity. Current diagnostic criteria emphasize dissociable variants of apathy that differentially affect goal-directed behavior. How these dimensions present and affect physical activity in HD and PD is unknown. Methods: Using a qualitative approach, we examined the experience of apathy and its impact on physical activity in 20 people with early-manifest HD or idiopathic PD. Results: Two major themes emerged: the multidimensionality of apathy, including initiation or goal-identification difficulties, and the interplay of apathy and fatigue; and facilitators of physical activity, including routines, safe environments and education. Conclusion: Physical activity interventions tailored to apathy phenotypes may maximize participant engagement

    Ultrafast optical switching using parity-time symmetric Bragg gratings

    Get PDF
    This paper reports on time-domain modeling of an optical switch based on the parity–time (PT) symmetric Bragg grating. The switching response is triggered by suddenly switching on the gain in the Bragg grating to create a PT-symmetric Bragg grating. Transient and dynamic behaviors of the PT Bragg gratings are analyzed using the time-domain numerical transmission line modeling method including a simple gain saturation model. The on/off ratio and the switching time of the PT Bragg grating optical switch are analyzed in terms of the level of gain introduced in the system and the operating frequency. The paper also discusses the effect the gain saturation has on the operation of the PT-symmetric Bragg gratings

    Parity-time symmetric coupled microresonators with a dispersive gain/loss

    Get PDF
    The paper reports on the coupling of Parity-Time (PT)-symmetric whispering gallery resonators with realistic material and gain/loss models. Response of the PT system is analyzed for the case of low and high material and gain dispersion, and also for two practical scenarios when the pump frequency is not aligned with the resonant frequency of the desired whispering gallery mode and when there is imbalance in the gain/loss profile. The results show that the presence of dispersion and frequency misalignment causes skewness in frequency bifurcation and significant reduction of the PT breaking point, respectively. Finally, we demonstrate a lasing mode operation which occurs due to an early PT-breaking by increasing loss in a PT system with unbalanced gain and loss

    Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    Get PDF
    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 x 0.39 x 1.0 mm³) 7.0T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans

    Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    Get PDF
    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 0.39 1.0 mm3 ) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 5 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (53 versus 43 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans.The work was supported by the Medical Research Council (UK) and Engineering and Physical Sciences Research Council (P.A.G.), National Institute for Health Research (T.W.C.N.), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust and University of Oxford (C.R.R., A.MA.D., C.K., & A.V.), John Fell OUP Fund (C.R.R, C.K.), Clinical Training Fellowship from the Guarantors of Brain (T.D.M.), the Patrick Berthoud Charitable Trust (T.D.M), the Encephalitis Society (T.D.M), and the Wellcome Trust (M.H.

    Modeling colorectal cancer: A bio-resource of 50 patient-derived organoid lines

    Get PDF
    Background and Aim Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. To improve outcomes for these patients, we need to develop new treatment strategies. Personalized cancer medicine, where patients are treated based on the characteristics of their own tumor, has gained significant interest for its promise to improve outcomes and reduce unnecessary side effects. The purpose of this study was to examine the potential utility of patient-derived colorectal cancer organoids (PDCOs) in a personalized cancer medicine setting. Methods Patient-derived colorectal cancer organoids were derived from tissue obtained from treatment-naïve patients undergoing surgical resection for the treatment of CRC. We examined the recapitulation of key histopathological, molecular, and phenotypic characteristics of the primary tumor. Results We created a bio-resource of PDCOs from primary and metastatic CRCs. Key histopathological features were retained in PDCOs when compared with the primary tumor. Additionally, a cohort of 12 PDCOs, and their corresponding primary tumors and normal sample, were characterized through whole exome sequencing and somatic variant calling. These PDCOs exhibited a high level of concordance in key driver mutations when compared with the primary tumor. Conclusions Patient-derived colorectal cancer organoids recapitulate characteristics of the tissue from which they are derived and are a powerful tool for cancer research. Further research will determine their utility for predicting patient outcomes in a personalized cancer medicine setting

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Psychosocial impact of undergoing prostate cancer screening for men with BRCA1 or BRCA2 mutations.

    Get PDF
    OBJECTIVES: To report the baseline results of a longitudinal psychosocial study that forms part of the IMPACT study, a multi-national investigation of targeted prostate cancer (PCa) screening among men with a known pathogenic germline mutation in the BRCA1 or BRCA2 genes. PARTICPANTS AND METHODS: Men enrolled in the IMPACT study were invited to complete a questionnaire at collaborating sites prior to each annual screening visit. The questionnaire included sociodemographic characteristics and the following measures: the Hospital Anxiety and Depression Scale (HADS), Impact of Event Scale (IES), 36-item short-form health survey (SF-36), Memorial Anxiety Scale for Prostate Cancer, Cancer Worry Scale-Revised, risk perception and knowledge. The results of the baseline questionnaire are presented. RESULTS: A total of 432 men completed questionnaires: 98 and 160 had mutations in BRCA1 and BRCA2 genes, respectively, and 174 were controls (familial mutation negative). Participants' perception of PCa risk was influenced by genetic status. Knowledge levels were high and unrelated to genetic status. Mean scores for the HADS and SF-36 were within reported general population norms and mean IES scores were within normal range. IES mean intrusion and avoidance scores were significantly higher in BRCA1/BRCA2 carriers than in controls and were higher in men with increased PCa risk perception. At the multivariate level, risk perception contributed more significantly to variance in IES scores than genetic status. CONCLUSION: This is the first study to report the psychosocial profile of men with BRCA1/BRCA2 mutations undergoing PCa screening. No clinically concerning levels of general or cancer-specific distress or poor quality of life were detected in the cohort as a whole. A small subset of participants reported higher levels of distress, suggesting the need for healthcare professionals offering PCa screening to identify these risk factors and offer additional information and support to men seeking PCa screening
    corecore