67 research outputs found
Elastic properties of mono- and polydisperse two-dimensional crystals of hard--core repulsive Yukawa particles
Monte Carlo simulations of mono-- and polydisperse two--dimensional crystals
are reported. The particles in the studied system, interacting through
hard--core repulsive Yukawa potential, form a solid phase of hexagonal lattice.
The elastic properties of crystalline Yukawa systems are determined in the
ensemble with variable shape of the periodic box. Effects of the Debye
screening length (), contact value of the potential (),
and the size polydispersity of particles on elastic properties of the system
are studied. The simulations show that the polydispersity of particles strongly
influences the elastic properties of the studied system, especially on the
shear modulus. It is also found that the elastic moduli increase with density
and their growth rate depends on the screening length. Shorter screening length
leads to faster increase of elastic moduli with density and decrease of the
Poisson's ratio. In contrast to its three-dimensional version, the studied
system is non-auxetic, i.e. shows positive Poisson's ratio
Decay of metastable current states in one-dimensional resonant tunneling devices
Current switching in a double-barrier resonant tunneling structure is studied
in the regime where the current-voltage characteristic exhibits intrinsic
bistability, so that in a certain range of bias two different steady states of
current are possible. Near the upper boundary V_{th} of the bistable region the
upper current state is metastable, and because of the shot noise it eventually
decays to the stable lower current state. We find the time of this switching
process in strip-shaped devices, with the width small compared to the length.
As the bias V is tuned away from the boundary value V_{th} of the bistable
region, the mean switching time \tau increases exponentially. We show that in
long strips \ln\tau \propto (V_{th} -V)^{5/4}, whereas in short strips \ln\tau
\propto (V_{th} -V)^{3/2}. The one-dimensional geometry of the problem enables
us to obtain analytically exact expressions for both the exponential and the
prefactor of \tau. Furthermore, we show that, depending on the parameters of
the system, the switching can be initiated either inside the strip, or at its
ends.Comment: 12 pages, 5 figures, update to published versio
Spin resonance in a Luttinger liquid with spin-orbit interaction
Spin-orbit interaction in quantum wires leads to a spin resonance at low
temperatures, even in the absence of an external dc magnetic field. We study
the effect of electron-electron interaction on the resonance. This interaction
is strong in quantum wires. We show that the electron-electron interaction
changes the shape of the resonance curve and produces an additional cusp at the
plasmon frequency. However, except for very strong electron-electron
interaction these changes are weak since this interaction by itself does not
break the spin-rotation symmetry that is violated weakly by the spin-orbit
interaction and external magnetic field.Comment: 8 pages (including 3 pages of supplementary material), 2 figure
Assessment of the phytoremediation potential of aquatic plants of the Belgorod region for wastewater treatment
The problem of wastewater treatment used by mining processing enterprises is currently extremely relevant in the field of nature management and natural restoration. Among the well-known, the described purifying methods are: mechanical, physico-chemical, and chemical technologies. The analysis of aquatic plants was carried out on the basis of the testing laboratory for agrochemical maintenance of agricultural production of the Federal State Budgetary Institutio
Lifetime of metastable states in resonant tunneling structures
We investigate the transport of electrons through a double-barrier
resonant-tunneling structure in the regime where the current-voltage
characteristics exhibit bistability. In this regime one of the states is
metastable, and the system eventually switches from it to the stable state. We
show that the mean switching time grows exponentially as the voltage across the
device is tuned from the its boundary value into the bistable region. In
samples of small area we find that the logarithm of the lifetime is
proportional to the voltage (measured from its boundary value) to the 3/2
power, while in larger samples the logarithm of the lifetime is linearly
proportional to the voltage.Comment: REVTeX 4, 5 pages, 3 EPS-figure
Geometric Random Inner Products: A New Family of Tests for Random Number Generators
We present a new computational scheme, GRIP (Geometric Random Inner
Products), for testing the quality of random number generators. The GRIP
formalism utilizes geometric probability techniques to calculate the average
scalar products of random vectors generated in geometric objects, such as
circles and spheres. We show that these average scalar products define a family
of geometric constants which can be used to evaluate the quality of random
number generators. We explicitly apply the GRIP tests to several random number
generators frequently used in Monte Carlo simulations, and demonstrate a new
statistical property for good random number generators
Spin Caloritronics
This is a brief overview of the state of the art of spin caloritronics, the
science and technology of controlling heat currents by the electron spin degree
of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh,
S. Valenzuela and Y. Kimura, Oxford University Pres
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
State of the climate in 2018
In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)
- …