6 research outputs found

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    Characterizing Convection Schemes Using Their Responses to Imposed Tendency Perturbations

    No full text
    Convection is usually parameterized in global climate models, and there are often large discrepancies between results obtained with different convection schemes. Conventional methods of comparing convection schemes using observational cases or directly in three-dimensional (3D) models do not always clearly identify parameterization strengths and weaknesses. In this paper we evaluate the response of parameterizations to various perturbations rather than their behavior under particular strong forcing. We use the linear response function method proposed by Kuang (2010) to compare 12 physical packages in five atmospheric models using single-column model (SCM) simulations under idealized radiative-convective equilibrium conditions. The models are forced with anomalous temperature and moisture tendencies. The temperature and moisture departures from equilibrium are compared with published results from a cloud-resolving model (CRM). Results show that the procedure is capable of isolating the behavior of a convection scheme from other physics schemes. We identify areas of agreement but also substantial differences between convection schemes, some of which can be related to scheme design. Some aspects of the model linear responses are related to their RCE profiles (the relative humidity profile in particular), while others constitute independent diagnostics. All the SCMs show irregularities or discontinuities in behavior that are likely related to threshold-related mechanisms used in the convection schemes, and which do not appear in the CRM. Our results highlight potential flaws in convection schemes and suggest possible new directions to explore for parameterization evaluation

    Improved Representation of Clouds in the Atmospheric Component LMDZ6A of the IPSL-CM6A Earth System Model

    No full text
    The cloud parameterizations of the LMDZ6A climate model (the atmospheric component of the IPSL-CM6 Earth system model) are entirely described, and the global cloud distribution and cloud radiative effects are evaluated against the CALIPSO-CloudSat and CERES observations. The cloud parameterizations in recent versions of LMDZ favor an object-oriented approach for convection, with two distinct parameterizations for shallow and deep convection and a coupling between convection and cloud description through the specification of the subgrid-scale distribution of water. Compared to the previous version of the model (LMDZ5A), LMDZ6A better represents the low-level cloud distribution in the tropical belt, and low-level cloud reflectance and cover are closer to the PARASOL and CALIPSO-GOCCP observations. Mid-level clouds, which were mostly missing in LMDZ5A, are now better represented globally. The distribution of cloud liquid and ice in mixed-phase clouds is also in better agreement with the observations. Among identified deficiencies, low-level cloud covers are too high in mid-latitude to high-latitude regions, and high-level cloud covers are biased low globally. However, the cloud global distribution is significantly improved, and progress has been made in the tuning of the model, resulting in a radiative balance in close agreement with the CERES observations. Improved tuning also revealed structural biases in LMDZ6A, which are currently being addressed through a series of new physical and radiative parameterizations for the next version of LMDZ. ©2020. The Authors

    EUREC4A

    Get PDF
    Abstract. The science guiding the EUREC4A campaign and its measurements are presented. EUREC4A comprised roughly five weeks of measurements in the downstream winter trades of the North Atlantic – eastward and south-eastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or, or the life-cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso (200 km) and larger (500 km) scales, roughly four hundred hours of flight time by four heavily instrumented research aircraft, four global-ocean class research vessels, an advanced ground-based cloud observatory, a flotilla of autonomous or tethered measurement devices operating in the upper ocean (nearly 10000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface, a network of water stable isotopologue measurements, complemented by special programmes of satellite remote sensing and modeling with a new generation of weather/climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from Brazil Ring Current Eddies to turbulence induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. </jats:p
    corecore