662 research outputs found

    Vortex Lattice in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} Well Above the First-Order Phase-Transition Boundary

    Full text link
    Measurements of non-local in-plane resistance originating from transverse vortex-vortex correlations have been performed on a Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} high-T_c superconductor in a magnetic field up to 9 T applied along the crystal c-axis. Our results demonstrate that a rigid vortex lattice does exist over a broad portion of the magnetic field -- temperature (H-T) phase diagram, well above the first-order transition boundary H_{FOT}(T). The results also provide evidence for the vortex lattice melting and vortex liquid decoupling phase transitions, occurring above the H_{FOT}(T).Comment: 14 pages, 10 figure

    Climate change in Central and South America: Recent trends, future projections, and impacts on regional agriculture

    Get PDF
    This report investigates the climate of two target regions of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Central and South America (CA and SA, respectively). The report assesses the implications of climate change for agriculture, with a particular focus on those aspects of climate change that will have greatest impact on the crops currently grown in each region. The study investigated the ability of General Circulation Models (GCMs) and downscaled climate change scenarios to reproduce already observed climates, to establish the reliability of future climate projections, as well as projections of how associated crops might grow under future conditions

    Phantom Cosmology with Non-minimally Coupled Real Scalar Field

    Full text link
    We find that the expansion of the universe is accelerating by analyzing the recent observation data of type \textsc{I}a supernova(SN-Ia) .It indicates that the equation of state of the dark energy might be smaller than -1,which leads to the introduction of phantom models featured by its negative kinetic energy to account for the regime of equation of state parameter w<1w<-1.In this paper the possibility of using a non-minimally coupled real scalar field as phantom to realize the equation of state parameter w<1w<-1 is discussed.The main equations which govern the evolution of the universe are obtained.Then we rewrite them with the observable quantities.Comment: 12 pages, 2 figures. Accepted for publication in Gen.Rel.Gra

    Phantom Field with O(N) Symmetry in Exponential Potential

    Full text link
    In this paper, we study the phase space of phantom model with O(\emph{N}) symmetry in exponential potential. Different from the model without O(\emph{N}) symmetry, the introduction of the symmetry leads to a lower bound w>3w>-3 on the equation of state for the existence of stable phantom dominated attractor phase. The reconstruction relation between the potential of O(\textit{N}) phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.

    Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up

    Full text link
    We consider late-time cosmology in a (phantom) scalar-tensor theory with an exponential potential, as a dark energy model with equation of state parameter close to -1 (a bit above or below this value). Scalar (and also other kinds of) matter can be easily taken into account. An exact spatially-flat FRW cosmology is constructed for such theory, which admits (eternal or transient) acceleration phases for the current universe, in correspondence with observational results. Some remarks on the possible origin of the phantom, starting from a more fundamental theory, are also made. It is shown that quantum gravity effects may prevent (or, at least, delay or soften) the cosmic doomsday catastrophe associated with the phantom, i.e. the otherwise unavoidable finite-time future singularity (Big Rip). A novel dark energy model (higher-derivative scalar-tensor theory) is introduced and it is shown to admit an effective phantom/quintessence description with a transient acceleration phase. In this case, gravity favors that an initially insignificant portion of dark energy becomes dominant over the standard matter/radiation components in the evolution process.Comment: LaTeX file, 48 pages, discussion of Big Rip is enlarged, a reference is adde

    Equation of State of Oscillating Brans-Dicke Scalar and Extra Dimensions

    Full text link
    We consider a Brans-Dicke scalar field stabilized by a general power law potential with power index nn at a finite equilibrium value. Redshifting matter induces oscillations of the scalar field around its equilibrium due to the scalar field coupling to the trace of the energy momentum tensor. If the stabilizing potential is sufficiently steep these high frequency oscillations are consistent with observational and experimental constraints for arbitrary value of the Brans-Dicke parameter ω\omega. We study analytically and numerically the equation of state of these high frequency oscillations in terms of the parameters ω\omega and nn and find the corresponding evolution of the universe scale factor. We find that the equation of state parameter can be negative and less than -1 but it is not related to the evolution of the scale factor in the usual way. Nevertheless, accelerating expansion is found for a certain parameter range. Our analysis applies also to oscillations of the size of extra dimensions (the radion field) around an equilibrium value. This duality between self-coupled Brans-Dicke and radion dynamics is applicable for ω=1+1/D\omega= -1 + 1/D where D is the number of extra dimensions.Comment: 10 two-column pages, RevTex4, 8 figures. Added clarifying discussions, new references. Accepted in Phys. Rev. D (to appear

    Cosmological Dynamics of Phantom Field

    Get PDF
    We study the general features of the dynamics of the phantom field in the cosmological context. In the case of inverse coshyperbolic potential, we demonstrate that the phantom field can successfully drive the observed current accelerated expansion of the universe with the equation of state parameter wϕ<1w_{\phi} < -1. The de-Sitter universe turns out to be the late time attractor of the model. The main features of the dynamics are independent of the initial conditions and the parameters of the model. The model fits the supernova data very well, allowing for 2.4<wϕ<1-2.4 < w_{\phi} < -1 at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear in Physical Review

    Phantom with Born-Infield type Lagrangian

    Full text link
    Recent analysis of the observation data indicates that the equation of state of the dark energy might be smaller than -1, which leads to the introduction of phantom models featured by its negative kinetic energy to account for the regime of equation of state w<1w<-1. In this paper, we generalize the idea to the Born-Infield type Lagrangian with negative kinetic energy term and give the condition for the potential, under which the late time attractor solution exists and also analyze a viable cosmological model in such a scheme.Comment: 13 pages, 6 figures, Reference updated, the final version will be published in Phys. Rev.

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    corecore