44 research outputs found

    Cardiovascular magnetic resonance feature tracking in small animals – a preliminary study on reproducibility and sample size calculation

    Get PDF
    Background Cardiovascular magnetic resonance feature tracking (CMR-FT) is a novel tissue tracking technique developed for noninvasive assessment of myocardial motion and deformation. This preliminary study aimed to evaluate the observer’s reproducibility of CMR-FT in a small animal (mouse) model and define sample size calculation for future trials. Methods Six C57BL/6 J mice were selected from the ongoing experimental mouse model onsite and underwent CMR with a 3 Tesla small animal MRI scanner. Myocardial deformation was analyzed using dedicated software (TomTec, Germany) by two observers. Left ventricular (LV) longitudinal, circumferential and radial strain (EllLAX, EccSAX and ErrSAX) were calculated. To assess intra-observer agreement data analysis was repeated after 4 weeks. The sample size required to detect a relative change in strain was calculated. Results In general, EccSAX and EllLAX demonstrated highest inter-observer reproducibility (ICC 0.79 (0.46–0.91) and 0.73 (0.56–0.83) EccSAX and EllLAX respectively). In contrast, at the intra-observer level EllLAX was more reproducible than EccSAX (ICC 0.83 (0.73–0.90) and 0.74 (0.49–0.87) EllLAX and EccSAX respectively). The reproducibility of ErrSAX was weak at both observer levels. Preliminary sample size calculation showed that a small study sample (e.g. ten animals to detect a relative 10% change in EccSAX) could be sufficient to detect changes if parameter variability is low. Conclusions This pilot study demonstrates good to excellent inter- and intra-observer reproducibility of CMR-FT technique in small animal model. The most reproducible measures are global circumferential and global longitudinal strain, whereas reproducibility of radial strain is weak. Furthermore, sample size calculation demonstrates that a small number of animals could be sufficient for future trials

    Assessment of Global Longitudinal and Circumferential Strain Using Computed Tomography Feature Tracking: Intra-Individual Comparison with CMR Feature Tracking and Myocardial Tagging in Patients with Severe Aortic Stenosis

    Get PDF
    In this study, we used a single commercially available software solution to assess global longitudinal (GLS) and global circumferential strain (GCS) using cardiac computed tomography (CT) and cardiac magnetic resonance (CMR) feature tracking (FT). We compared agreement and reproducibility between these two methods and the reference standard, CMR tagging (TAG). Twenty-seven patients with severe aortic stenosis underwent CMR and cardiac CT examinations. FT analysis was performed using Medis suite version 3.0 (Leiden, The Netherlands) software. Segment (Medviso) software was used for GCS assessment from tagged images. There was a trend towards the underestimation of GLS by CT-FT when compared to CMR-FT (19.4 +/- 5.04 vs. 22.40 +/- 5.69, respectively; p = 0.065). GCS values between TAG, CT-FT, and CMR-FT were similar (p = 0.233). CMR-FT and CT-FT correlated closely for GLS (r = 0.686, p < 0.001) and GCS (r = 0.707, p < 0.001), while both of these methods correlated moderately with TAG for GCS (r = 0.479, p < 0.001 for CMR-FT vs. TAG; r = 0.548 for CT-FT vs. TAG). Intraobserver and interobserver agreement was excellent in all techniques. Our findings show that, in elderly patients with severe aortic stenosis (AS), the FT algorithm performs equally well in CMR and cardiac CT datasets for the assessment of GLS and GCS, both in terms of reproducibility and agreement with the gold standard, TAG

    Cardiovascular Magnetic Resonance Imaging Feature Tracking: Impact of Training on Observer Performance and Reproducibility

    Get PDF
    BACKGROUND: Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software. METHODS: Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers. RESULTS: Training improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC \u3e0.86 and \u3e0.81) and after training (ICC \u3e0.91 and \u3e0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance. CONCLUSION: Observer experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance

    Renal sympathetic denervation restores aortic distensibility in patients with resistant hypertension: data from a multi-center trial

    Get PDF
    Renal sympathetic denervation (RDN) is under investigation as a treatment option in patients with resistant hypertension (RH). Determinants of arterial compliance may, however, help to predict the BP response to therapy. Aortic distensibility (AD) is a well-established parameter of aortic stiffness and can reliably be obtained by CMR. This analysis sought to investigate the effects of RDN on AD and to assess the predictive value of pre-treatment AD for BP changes. We analyzed data of 65 patients with RH included in a multicenter trial. RDN was performed in all participants. A standardized CMR protocol was utilized at baseline and at 6-month follow-up. AD was determined as the change in cross-sectional aortic area per unit change in BP. Office BP decreased significantly from 173/92 ± 24/16 mmHg at baseline to 151/85 ± 24/17 mmHg (p < 0.001) 6 months after RDN. Maximum aortic areas increased from 604.7 ± 157.7 to 621.1 ± 157.3 mm2 (p = 0.011). AD improved significantly by 33% from 1.52 ± 0.82 to 2.02 ± 0.93 × 10-3 mmHg-1 (p < 0.001). Increase of AD at follow-up was significantly more pronounced in younger patients (p = 0.005) and responders to RDN (p = 0.002). Patients with high-baseline AD were significantly younger (61.4 ± 10.1 vs. 67.1 ± 8.4 years, p = 0.022). However, there was no significant correlation of baseline AD to response to RDN. AD is improved after RDN across all age groups. Importantly, these improvements appear to be unrelated to observed BP changes, suggesting that RDN may have direct effects on the central vasculature

    What Role Can Process Mining Play in Recurrent Clinical Guidelines Issues? A Position Paper

    Get PDF
    [EN] In the age of Evidence-Based Medicine, Clinical Guidelines (CGs) are recognized to be an indispensable tool to support physicians in their daily clinical practice. Medical Informatics is expected to play a relevant role in facilitating diffusion and adoption of CGs. However, the past pioneering approaches, often fragmented in many disciplines, did not lead to solutions that are actually exploited in hospitals. Process Mining for Healthcare (PM4HC) is an emerging discipline gaining the interest of healthcare experts, and seems able to deal with many important issues in representing CGs. In this position paper, we briefly describe the story and the state-of-the-art of CGs, and the efforts and results of the past approaches of medical informatics. Then, we describe PM4HC, and we answer questions like how can PM4HC cope with this challenge? Which role does PM4HC play and which rules should be employed for the PM4HC scientific community?Gatta, R.; Vallati, M.; FernĂĄndez Llatas, C.; Martinez-Millana, A.; Orini, S.; Sacchi, L.; Lenkowicz, J.... (2020). What Role Can Process Mining Play in Recurrent Clinical Guidelines Issues? A Position Paper. International Journal of Environmental research and Public Health (Online). 17(18):1-19. https://doi.org/10.3390/ijerph17186616S1191718Guyatt, G. (1992). Evidence-Based Medicine. JAMA, 268(17), 2420. doi:10.1001/jama.1992.03490170092032Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz, O. B., & Clayton, P. D. (1994). Rationale for the Arden Syntax. Computers and Biomedical Research, 27(4), 291-324. doi:10.1006/cbmr.1994.1023Peleg, M. (2013). Computer-interpretable clinical guidelines: A methodological review. Journal of Biomedical Informatics, 46(4), 744-763. doi:10.1016/j.jbi.2013.06.009Van de Velde, S., Heselmans, A., Delvaux, N., Brandt, L., Marco-Ruiz, L., Spitaels, D., 
 Flottorp, S. (2018). A systematic review of trials evaluating success factors of interventions with computerised clinical decision support. Implementation Science, 13(1). doi:10.1186/s13012-018-0790-1Rawson, T. M., Moore, L. S. P., Hernandez, B., Charani, E., Castro-Sanchez, E., Herrero, P., 
 Holmes, A. H. (2017). A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately? Clinical Microbiology and Infection, 23(8), 524-532. doi:10.1016/j.cmi.2017.02.028Greenes, R. A., Bates, D. W., Kawamoto, K., Middleton, B., Osheroff, J., & Shahar, Y. (2018). Clinical decision support models and frameworks: Seeking to address research issues underlying implementation successes and failures. Journal of Biomedical Informatics, 78, 134-143. doi:10.1016/j.jbi.2017.12.005Garcia, C. dos S., Meincheim, A., Faria Junior, E. R., Dallagassa, M. R., Sato, D. M. V., Carvalho, D. R., 
 Scalabrin, E. E. (2019). Process mining techniques and applications – A systematic mapping study. Expert Systems with Applications, 133, 260-295. doi:10.1016/j.eswa.2019.05.003Bhargava, A., Kim, T., Quine, D. B., & Hauser, R. G. (2019). A 20-Year Evaluation of LOINC in the United States’ Largest Integrated Health System. Archives of Pathology & Laboratory Medicine, 144(4), 478-484. doi:10.5858/arpa.2019-0055-oaLee, D., de Keizer, N., Lau, F., & Cornet, R. (2014). Literature review of SNOMED CT use. Journal of the American Medical Informatics Association, 21(e1), e11-e19. doi:10.1136/amiajnl-2013-001636TROTTI, A., COLEVAS, A., SETSER, A., RUSCH, V., JAQUES, D., BUDACH, V., 
 COLEMAN, C. (2003). CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Seminars in Radiation Oncology, 13(3), 176-181. doi:10.1016/s1053-4296(03)00031-6Daniel, C., & Kalra, D. (2019). Clinical Research Informatics: Contributions from 2018. Yearbook of Medical Informatics, 28(01), 203-205. doi:10.1055/s-0039-1677921Marco-Ruiz, L., Pedrinaci, C., Maldonado, J. A., Panziera, L., Chen, R., & Bellika, J. G. (2016). Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach. Journal of Biomedical Informatics, 62, 243-264. doi:10.1016/j.jbi.2016.07.011Marcos, C., GonzĂĄlez-Ferrer, A., Peleg, M., & Cavero, C. (2015). Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7’s Virtual Medical Record standard. Journal of the American Medical Informatics Association, 22(3), 587-599. doi:10.1093/jamia/ocv003Wulff, A., Haarbrandt, B., Tute, E., Marschollek, M., Beerbaum, P., & Jack, T. (2018). An interoperable clinical decision-support system for early detection of SIRS in pediatric intensive care using openEHR. Artificial Intelligence in Medicine, 89, 10-23. doi:10.1016/j.artmed.2018.04.012Chen, C., Chen, K., Hsu, C.-Y., Chiu, W.-T., & Li, Y.-C. (Jack). (2010). A guideline-based decision support for pharmacological treatment can improve the quality of hyperlipidemia management. Computer Methods and Programs in Biomedicine, 97(3), 280-285. doi:10.1016/j.cmpb.2009.12.004Anani, N., Mazya, M. V., Chen, R., Prazeres Moreira, T., Bill, O., Ahmed, N., 
 Koch, S. (2017). Applying openEHR’s Guideline Definition Language to the SITS international stroke treatment registry: a European retrospective observational study. BMC Medical Informatics and Decision Making, 17(1). doi:10.1186/s12911-016-0401-5Eddy, D. M. (1982). Clinical Policies and the Quality of Clinical Practice. New England Journal of Medicine, 307(6), 343-347. doi:10.1056/nejm198208053070604Guyatt, G. H. (1990). Then-of-1 Randomized Controlled Trial: Clinical Usefulness. Annals of Internal Medicine, 112(4), 293. doi:10.7326/0003-4819-112-4-293CHALMERS, I. (1993). The Cochrane Collaboration: Preparing, Maintaining, and Disseminating Systematic Reviews of the Effects of Health Care. Annals of the New York Academy of Sciences, 703(1 Doing More Go), 156-165. doi:10.1111/j.1749-6632.1993.tb26345.xWoolf, S. H., Grol, R., Hutchinson, A., Eccles, M., & Grimshaw, J. (1999). Clinical guidelines: Potential benefits, limitations, and harms of clinical guidelines. BMJ, 318(7182), 527-530. doi:10.1136/bmj.318.7182.527Grading quality of evidence and strength of recommendations. (2004). BMJ, 328(7454), 1490. doi:10.1136/bmj.328.7454.1490Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., & SchĂŒnemann, H. J. (2008). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 336(7650), 924-926. doi:10.1136/bmj.39489.470347.adHill, J., Bullock, I., & Alderson, P. (2011). A Summary of the Methods That the National Clinical Guideline Centre Uses to Produce Clinical Guidelines for the National Institute for Health and Clinical Excellence. Annals of Internal Medicine, 154(11), 752. doi:10.7326/0003-4819-154-11-201106070-00007Qaseem, A. (2012). Guidelines International Network: Toward International Standards for Clinical Practice Guidelines. Annals of Internal Medicine, 156(7), 525. doi:10.7326/0003-4819-156-7-201204030-00009Rosenfeld, R. M., Nnacheta, L. C., & Corrigan, M. D. (2015). Clinical Consensus Statement Development Manual. Otolaryngology–Head and Neck Surgery, 153(2_suppl), S1-S14. doi:10.1177/0194599815601394De Boeck, K., Castellani, C., & Elborn, J. S. (2014). Medical consensus, guidelines, and position papers: A policy for the ECFS. Journal of Cystic Fibrosis, 13(5), 495-498. doi:10.1016/j.jcf.2014.06.012Clinical Practical Guidelineshttp://www.openclinical.org/guidelines.htmlHaynes, A. B., Weiser, T. G., Berry, W. R., Lipsitz, S. R., Breizat, A.-H. S., Dellinger, E. P., 
 Gawande, A. A. (2009). A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Population. New England Journal of Medicine, 360(5), 491-499. doi:10.1056/nejmsa0810119Grigg, E. (2015). Smarter Clinical Checklists. Anesthesia & Analgesia, 121(2), 570-573. doi:10.1213/ane.0000000000000352Hales, B., Terblanche, M., Fowler, R., & Sibbald, W. (2007). Development of medical checklists for improved quality of patient care. International Journal for Quality in Health Care, 20(1), 22-30. doi:10.1093/intqhc/mzm062Greenfield, S. (2017). Clinical Practice Guidelines. JAMA, 317(6), 594. doi:10.1001/jama.2016.19969Vegting, I. L., van Beneden, M., Kramer, M. H. H., Thijs, A., Kostense, P. J., & Nanayakkara, P. W. B. (2012). How to save costs by reducing unnecessary testing: Lean thinking in clinical practice. European Journal of Internal Medicine, 23(1), 70-75. doi:10.1016/j.ejim.2011.07.003Drummond, M. (2016). Clinical Guidelines: A NICE Way to Introduce Cost-Effectiveness Considerations? Value in Health, 19(5), 525-530. doi:10.1016/j.jval.2016.04.020Prior, M., Guerin, M., & Grimmer-Somers, K. (2008). The effectiveness of clinical guideline implementation strategies - a synthesis of systematic review findings. Journal of Evaluation in Clinical Practice, 14(5), 888-897. doi:10.1111/j.1365-2753.2008.01014.xWatts, C. G., Dieng, M., Morton, R. L., Mann, G. J., Menzies, S. W., & Cust, A. E. (2014). Clinical practice guidelines for identification, screening and follow-up of individuals at high risk of primary cutaneous melanoma: a systematic review. British Journal of Dermatology, 172(1), 33-47. doi:10.1111/bjd.13403Woolf, S., SchĂŒnemann, H. J., Eccles, M. P., Grimshaw, J. M., & Shekelle, P. (2012). Developing clinical practice guidelines: types of evidence and outcomes; values and economics, synthesis, grading, and presentation and deriving recommendations. Implementation Science, 7(1). doi:10.1186/1748-5908-7-61Legido-Quigley, H., Panteli, D., Brusamento, S., Knai, C., Saliba, V., Turk, E., 
 Busse, R. (2012). Clinical guidelines in the European Union: Mapping the regulatory basis, development, quality control, implementation and evaluation across member states. Health Policy, 107(2-3), 146-156. doi:10.1016/j.healthpol.2012.08.004Rashidian, A., Eccles, M. P., & Russell, I. (2008). Falling on stony ground? A qualitative study of implementation of clinical guidelines’ prescribing recommendations in primary care. Health Policy, 85(2), 148-161. doi:10.1016/j.healthpol.2007.07.011Yang, W.-S., & Hwang, S.-Y. (2006). A process-mining framework for the detection of healthcare fraud and abuse. Expert Systems with Applications, 31(1), 56-68. doi:10.1016/j.eswa.2005.09.003Kose, I., Gokturk, M., & Kilic, K. (2015). An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Applied Soft Computing, 36, 283-299. doi:10.1016/j.asoc.2015.07.018Pryor, T. A., Gardner, R. M., Clayton, P. D., & Warner, H. R. (1983). The HELP system. Journal of Medical Systems, 7(2), 87-102. doi:10.1007/bf00995116Shahar, Y., Miksch, S., & Johnson, P. (1998). The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine, 14(1-2), 29-51. doi:10.1016/s0933-3657(98)00015-3Boxwala, A. A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q. T., Wang, D., 
 Shortliffe, E. H. (2004). GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. Journal of Biomedical Informatics, 37(3), 147-161. doi:10.1016/j.jbi.2004.04.002Terenziani, P., Molino, G., & Torchio, M. (2001). A modular approach for representing and executing clinical guidelines. Artificial Intelligence in Medicine, 23(3), 249-276. doi:10.1016/s0933-3657(01)00087-2Sutton, D. R., & Fox, J. (2003). The Syntax and Semantics of the PROformaGuideline Modeling Language. Journal of the American Medical Informatics Association, 10(5), 433-443. doi:10.1197/jamia.m1264Musen, M. A., Tu, S. W., Das, A. K., & Shahar, Y. (1996). EON: A Component-Based Approach to Automation of Protocol-Directed Therapy. Journal of the American Medical Informatics Association, 3(6), 367-388. doi:10.1136/jamia.1996.97084511Ciccarese, P., Caffi, E., Quaglini, S., & Stefanelli, M. (2005). Architectures and tools for innovative Health Information Systems: The Guide Project. International Journal of Medical Informatics, 74(7-8), 553-562. doi:10.1016/j.ijmedinf.2005.02.001Shiffman, R. N., & Greenes, R. A. (1994). Improving Clinical Guidelines with Logic and Decision-table Techniques. Medical Decision Making, 14(3), 245-254. doi:10.1177/0272989x9401400306Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R. A., 
 Stefanelli, M. (2003). Comparing Computer-interpretable Guideline Models: A Case-study Approach. Journal of the American Medical Informatics Association, 10(1), 52-68. doi:10.1197/jamia.m1135Karadimas, H., Ebrahiminia, V., & Lepage, E. (2018). User-defined functions in the Arden Syntax: An extension proposal. Artificial Intelligence in Medicine, 92, 103-110. doi:10.1016/j.artmed.2015.11.003Peleg, M., Keren, S., & Denekamp, Y. (2008). Mapping computerized clinical guidelines to electronic medical records: Knowledge-data ontological mapper (KDOM). Journal of Biomedical Informatics, 41(1), 180-201. doi:10.1016/j.jbi.2007.05.003German, E., Leibowitz, A., & Shahar, Y. (2009). An architecture for linking medical decision-support applications to clinical databases and its evaluation. Journal of Biomedical Informatics, 42(2), 203-218. doi:10.1016/j.jbi.2008.10.007Marcos, M., Maldonado, J. A., MartĂ­nez-Salvador, B., BoscĂĄ, D., & Robles, M. (2013). Interoperability of clinical decision-support systems and electronic health records using archetypes: A case study in clinical trial eligibility. Journal of Biomedical Informatics, 46(4), 676-689. doi:10.1016/j.jbi.2013.05.004Marco-Ruiz, L., Moner, D., Maldonado, J. A., Kolstrup, N., & Bellika, J. G. (2015). Archetype-based data warehouse environment to enable the reuse of electronic health record data. International Journal of Medical Informatics, 84(9), 702-714. doi:10.1016/j.ijmedinf.2015.05.016Gooch, P., & Roudsari, A. (2011). Computerization of workflows, guidelines, and care pathways: a review of implementation challenges for process-oriented health information systems. Journal of the American Medical Informatics Association, 18(6), 738-748. doi:10.1136/amiajnl-2010-000033Quaglini, S., Stefanelli, M., Cavallini, A., Micieli, G., Fassino, C., & Mossa, C. (2000). Guideline-based careflow systems. Artificial Intelligence in Medicine, 20(1), 5-22. doi:10.1016/s0933-3657(00)00050-6Schadow, G., Russler, D. C., & McDonald, C. J. (2001). Conceptual alignment of electronic health record data with guideline and workflow knowledge. International Journal of Medical Informatics, 64(2-3), 259-274. doi:10.1016/s1386-5056(01)00196-4GonzĂĄlez-Ferrer, A., ten Teije, A., Fdez-Olivares, J., & Milian, K. (2013). Automated generation of patient-tailored electronic care pathways by translating computer-interpretable guidelines into hierarchical task networks. Artificial Intelligence in Medicine, 57(2), 91-109. doi:10.1016/j.artmed.2012.08.008Shabo, A., Parimbelli, E., Quaglini, S., Napolitano, C., & Peleg, M. (2016). Interplay between Clinical Guidelines and Organizational Workflow Systems. Methods of Information in Medicine, 55(06), 488-494. doi:10.3414/me16-01-0006Mulyar, N., van der Aalst, W. M. P., & Peleg, M. (2007). A Pattern-based Analysis of Clinical Computer-interpretable Guideline Modeling Languages. Journal of the American Medical Informatics Association, 14(6), 781-787. doi:10.1197/jamia.m2389Grando, M. A., Glasspool, D., & Fox, J. (2012). A formal approach to the analysis of clinical computer-interpretable guideline modeling languages. Artificial Intelligence in Medicine, 54(1), 1-13. doi:10.1016/j.artmed.2011.07.001Kaiser, K., & Marcos, M. (2015). Leveraging workflow control patterns in the domain of clinical practice guidelines. BMC Medical Informatics and Decision Making, 16(1). doi:10.1186/s12911-016-0253-zMartĂ­nez-Salvador, B., & Marcos, M. (2016). Supporting the Refinement of Clinical Process Models to Computer-Interpretable Guideline Models. Business & Information Systems Engineering, 58(5), 355-366. doi:10.1007/s12599-016-0443-3Decision Model and Notation Version 1.0https://www.omg.org/spec/DMN/1.0Ghasemi, M., & Amyot, D. (2016). Process mining in healthcare: a systematised literature review. International Journal of Electronic Healthcare, 9(1), 60. doi:10.1504/ijeh.2016.078745Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Rovani, M., Maggi, F. M., de Leoni, M., & van der Aalst, W. M. P. (2015). Declarative process mining in healthcare. Expert Systems with Applications, 42(23), 9236-9251. doi:10.1016/j.eswa.2015.07.040Rojas, E., Munoz-Gama, J., SepĂșlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Lenkowicz, J., Gatta, R., Masciocchi, C., CasĂ , C., Cellini, F., Damiani, A., 
 Valentini, V. (2018). Assessing the conformity to clinical guidelines in oncology. Management Decision, 56(10), 2172-2186. doi:10.1108/md-09-2017-0906FernĂĄndez-Llatas, C., Benedi, J.-M., GarcĂ­a-GĂłmez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Qu, G., Liu, Z., Cui, S., & Tang, J. (2013). Study on Self-Adaptive Clinical Pathway Decision Support System Based on Case-Based Reasoning. Frontier and Future Development of Information Technology in Medicine and Education, 969-978. doi:10.1007/978-94-007-7618-0_95Van de Velde, S., Roshanov, P., Kortteisto, T., Kunnamo, I., Aertgeerts, B., Vandvik, P. O., & Flottorp, S. (2015). Tailoring implementation strategies for evidence-based recommendations using computerised clinical decision support systems: protocol for the development of the GUIDES tools. Implementation Science, 11(1). doi:10.1186/s13012-016-0393-

    Multicentric Atrial Strain COmparison between Two Different Modalities: MASCOT HIT Study

    Get PDF
    Two methods are currently available for left atrial (LA) strain measurement by speckle tracking echocardiography, with two different reference timings for starting the analysis: QRS (QRS-LASr) and P wave (P-LASr). The aim of MASCOT HIT study was to define which of the two was more reproducible, more feasible, and less time consuming. In 26 expert centers, LA strain was analyzed by two different echocardiographers (young vs senior) in a blinded fashion. The study population included: healthy subjects, patients with arterial hypertension or aortic stenosis (LA pressure overload, group 2) and patients with mitral regurgitation or heart failure (LA volume–pressure overload, group 3). Difference between the inter-correlation coefficient (ICC) by the two echocardiographers using the two techniques, feasibility and analysis time of both methods were analyzed. A total of 938 subjects were included: 309 controls, 333 patients in group 2, and 296 patients in group 3. The ICC was comparable between QRS-LASr (0.93) and P-LASr (0.90). The young echocardiographers calculated QRS-LASr in 90% of cases, the expert ones in 95%. The feasibility of P-LASr was 85% by young echocardiographers and 88% by senior ones. QRS-LASr young median time was 110 s (interquartile range, IR, 78-149) vs senior 110 s (IR 78-155); for P-LASr, 120 s (IR 80-165) and 120 s (IR 90-161), respectively. LA strain was feasible in the majority of patients with similar reproducibility for both methods. QRS complex guaranteed a slightly higher feasibility and a lower time wasting compared to the use of P wave as the reference

    Ischemic Heart Disease: A Comprehensive Evaluation Using Cardiovascular Magnetic Resonance

    No full text
    Cardiovascular magnetic resonance is becoming an important imaging modality in clinical cardiology. As an exceptionally accurate and comprehensive diagnostic tool, cardiovascular magnetic resonance is becoming the first-choice modality for imaging the heart and great vessels. Stress cardiovascular magnetic resonance imaging enables the detection of hemodynamically significant coronary artery lesions and the choice of treatment strategy when stenosis is intermediate. Viability assessment is very important as it allows differentiating between dysfunctional but still viable myocardium and predicts the recovery of ventricular function after successful revascularization. However, the availability and costs of cardiovascular magnetic resonance remain the major obstacle and makes the investigation unachievable to many patients

    Work for Travel: How to speed up your learning curve

    No full text
    Background. ‱ Myocardial healing after acute damage is an active process and changes in myocardial tissue composition may influence cardiac function ‱ Extracellular fat deposition predispose to ventricular arrhythmias and increased risk of sudden cardiac death ‱ CMR studies report that fat deposition can be detected in up to 78% of individuals who experienced myocardial infarction (MI). Aims. ‱ To determine the advantages of advanced CMR imaging techniques ‱ To assess changes in myocardial tissue after MI using fat-water separated imaging ‱ To investigate changes in global and regional myocardial deformation in patients with lipomatous metaplasia using CMR-FT. Materials and Methods. ‱ Twenty subjects with chronic MI (infarct age median, 60 months; range, 13.0 – 90.0 months) ‱ CMR images were acquired using 1.5 T or 3 T MRI scanners : ‱ Cine images (bSSFP) to assess myocardial deformation ‱ LGE to assess scar size, location, transmurality ‱ Fat-­‐water separated (mDixon) imaging to detect lipomatous metaplasia. [...]

    Left atrial mechanics in patients with acute STEMI and secondary mitral regurgitation: A prospective pilot CMR feature tracking study

    No full text
    Background and objective: Left atrium (LA) is an important biomarker of adverse cardiovascular outcomes and cerebrovascular events. This study aimed to evaluate LA myocardial deformation using cardiac magnetic resonance feature tracking (CMR-FT) in patients with acute ST-segment elevation myocardial infarction (STEMI) and secondary mitral regurgita- tion (MR). Additionally, to assess interobserver and intraobserver variability of the technique.Materials and methods: Twenty patients with STEMI underwent CMR with a 1.5 Tesla MRI scanner. According to the presence of MR patients were divided into two groups: MR(+) and MR(−). Total LA strain (Δs), passive LA strain (Δe), and active LA strain (Δa) were obtained. Additionally, total, passive and active strain rates (SRs, SRe, and SRa) were calculated. To assess interobserver agreement data analysis was performed by second independent observer.Results: LA volumetric and functional parameters were similar in both groups. All LA strain values were significantly higher in patients with MR: Δs (27.67 ± 10.25 for MR(−) vs. 32.80 ± 6.95 for MR(+); P = 0.01), Δe (15.29 ± 7.30 for MR(−) vs. 19.22 ± 6.04 for MR(+); P = 0.01) and Δa (12.38 ± 4.23 for MR(−) vs. 14.44 ± 5.19 for MR(+); P = 0.03). Only SRe significantly increased in patients with MR (−0.57 ± 0.24 for MR(−) vs. −0.70 ± 0.20 for MR(+); P = 0.01). All LA deformation parameters demonstrated high interobserver and intraobserver agreement. Conclusions: Conventional volumetric and functional LA parameters do not detect early changes in LA performance in patients with STEMI and secondary MR. In contrast, LA reservoir, passive and active strain are significantly higher in patients with MR. Only peak early negative strain rate substantially increases during secondary MR. LA deformation parameters derived from conventional cine images using CMR-FT technique are highly reproducible

    Miokardo deformavimosi rodikliĆł ÄŻvertinimas ĆĄirdies magnetinio rezonanso tyrimu bandomuosiuose ir klinikiniuose tyrimuose

    No full text
    The aim and objectives of the study. The aim of the study. The aim of our study is to assess advantages and reproducibility of myocardial deformation parameters derived using cardiovascular magnetic resonance feature tracking technique in experimental animal (mouse) model and patients with acute and previous myocardial infarction. The objectives of the study. 1. To assess inter- and intra-observer agreement of CMR feature tracking derived strain measurements in mice and define sudy sample size necessary for future trials. 2. To assess changes in myocardial tissue after myocardial infarction using advanced CMR imaging (nDixon) and investigate changes in global and regional myocardial deformation in patients with old myocardial infarction and lipomatous metaplasia. 3. To evaluate left atrial performance during acute ischemia and mitral regurgitation. Also, to assess inter- and intra-observer variability of CMR feature tracking derived left atrial strain and strain rate measurements
    corecore