23 research outputs found

    Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression

    Get PDF
    Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes

    Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium.

    Get PDF
    Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single-nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46 450 cases and 42 600 controls) and analyzed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 [rs1053338, per allele OR = 1.07, 95% confidence interval (CI) = 1.04-1.10, P = 2.9 × 10(-6)], AKAP9-M463I at 7q21 (rs6964587, OR = 1.05, 95% CI = 1.03-1.07, P = 1.7 × 10(-6)) and NEK10-L513S at 3p24 (rs10510592, OR = 1.10, 95% CI = 1.07-1.12, P = 5.1 × 10(-17)). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine genome-wide association studies (GWASs): for ATXN7-K264R, OR = 1.07 (95% CI = 1.05-1.10, P = 1.0 × 10(-8)); for AKAP9-M463I, OR = 1.05 (95% CI = 1.04-1.07, P = 2.0 × 10(-10)). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known GWAS hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.BCAC is funded by Cancer Research UK (C1287/A10118, C1287/A12014) and by the European Community’s Seventh Framework Programme under grant agreement n8 223175 (HEALTH-F2–2009-223175) (COGS). Meetings of the BCAC have been funded by the European Union COST programme (BM0606). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program and the Ministry of Economic Development, Innovation and Export Trade of Quebec (PSR-SIIRI-701). Additional support for the iCOGS infrastructure was provided by the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS and OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute (USA). The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products or organizations imply endorsement t by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow and M.C.S. is a NHMRC Senior Research Fellow. The OFBCR work was also supported by the Canadian Institutes of Health Research ‘CIHR Team in Familial Risks of Breast Cancer’ program. The ABCS was funded by the Dutch Cancer Society Grant no. NKI2007-3839 and NKI2009-4363. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Programme of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). E.S. is supported by NIHR Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London, UK. Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z). I.T. is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by the Fondation de France, the French National Institute of Cancer (INCa), The National League against Cancer, the National Agency for Environmental l and Occupational Health and Food Safety (ANSES), the National Agency for Research (ANR), and the Association for Research against Cancer (ARC). The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital.The CNIO-BCS was supported by the Genome Spain Foundation the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit, CNIO is supported by the Instituto de Salud Carlos III. D.A. was supported by a Fellowship from the Michael Manzella Foundation (MMF) and was a participant in the CNIO Summer Training Program. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the National Institutes of Health (R01 CA77398). Collection of cancer incidence e data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. HAC receives support from the Lon V Smith Foundation (LVS39420). The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), as well as the Department of Internal Medicine , Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus Bonn, Germany. The HEBCS was supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (132473), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by a research grant from Takeda Science Foundation , by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by short-term fellowships from the German Academic Exchange Program (to N.B), and the Friends of Hannover Medical School (to N.B.). Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, the Stockholm Cancer Foundation and the Swedish Cancer Society. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation , the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC (145684, 288704, 454508). Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC (199600). G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018 and 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP) which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute’s Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the ‘Stichting tegen Kanker’ (232-2008 and 196-2010). The MARIE study was supported by the Deutsche Krebshilfe e.V. (70-2892-BR I), the Federal Ministry of Education Research (BMBF) Germany (01KH0402), the Hamburg Cancer Society and the German Cancer Research Center (DKFZ). MBCSG is supported by grants from the Italian Association ciation for Cancer Research (AIRC) and by funds from the Italian citizens who allocated a 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5 × 1000’). The MCBCS was supported by the NIH grants (CA122340, CA128978) and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), the Breast Cancer Research Foundation and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was supported by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research (grant CRN-87521) and the Ministry of Economic Development, Innovation and Export Trade (grant PSR-SIIRI-701). MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19,tel:08/1/35/19./550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council (155218/V40, 175240/S10 to A.L.B.D., FUGE-NFR 181600/ V11 to V.N.K. and a Swizz Bridge Award to A.L.B.D.). The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Sigrid Juselius Foundation, the Academy of Finland, the University of Oulu, and the Oulu University Hospital. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NLCP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. pKARMA is a combination of the KARMA and LIBRO-1 studies. KARMA was supported by Ma¨rit and Hans Rausings Initiative Against Breast Cancer. KARMA and LIBRO-1 were supported the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linnaeus Centre (Contract ID 70867902) financed by the Swedish Research Council. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SASBAC was supported by funding from the Agency for Science, Technology and Research of Singapore (A∗STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation KC was financed by the Swedish Cancer Society (5128-B07-01PAF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295. Funding for the SCCS was provided by NIH grant R01 CA092447. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012-0000347). SGBCC is funded by the National Medical Research Council Start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). The recruitment of controls by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC) was funded by the Biomedical Research Council (grant number: 05/1/21/19/425). SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. K. J. is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128978), the Breast Cancer Research Foundation , Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stefanie Spielman Fund for Breast Cancer Research and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMOKRITOS) has been co-financed by the European Union (European Social Fund – ESF) and Greek National Funds through the Operational Program ‘Education and Life-long Learning’ of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust.This is the advanced access published version distributed under a Creative Commons Attribution License 2.0, which can also be viewed on the publisher's webstie at: http://hmg.oxfordjournals.org/content/early/2014/07/04/hmg.ddu311.full.pdf+htm

    Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

    Get PDF
    Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored. Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium. Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue. Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2. Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Whale lice (Isocyamus deltobranchium & Isocyamus delphinii; Cyamidae) prevalence in odontocetes off the German and Dutch coasts – morphological and molecular characterization and health implications

    Get PDF
    Whale lice (Cyamidae; Amphipoda) are ectoparasitic crustaceans adapted to the marine environment with cetaceans as their host. There are few reports of cyamids occurring in odontocetes from the North Sea, and long-term studies are lacking. Marine mammal health was monitored along the German and Dutch coasts in the past decades, with extensive post mortem investigations conducted. The aim of this study was to analyse archived ectoparasite samples from stranded cetaceans from the North Sea (2010–2019), to determine species, prevalence and impact of ectoparasite infection. Ectoparasites were found on two cetacean species – harbour porpoises (Phocoena phocoena), as the most abundant cetacean species in the North Sea, and on a pilot whale (Globicephala melas), as a rare species here. Prevalence of ectoparasitic crustaceans in cetaceans was low: 7.6% in porpoises stranded in the Netherlands (n = 608) and 1.6% in porpoises stranded in Germany (n = 122). All whale lice infections were found on hosts with skin lesions characterised by ulcerations. Morphological investigations revealed characteristic differences between the cyamid species Isocyamus (I.) delphinii and I. deltobranchium identified. Isocyamus deltobranchium was determined in all infected harbour porpoises. I. delphinii was identified on only the pilot whale. Molecular analyses showed 88% similarity of mDNA COI sequences of I. delphinii with I. deltobranchium supporting them as separate species. Phylogenetic analyses of additional gene loci are required to fully assess the diversity and exchange of whale lice species between geographical regions as well as host specificity. Differing whale lice prevalences in porpoises stranded in the Netherlands and Germany could indicate a difference in severity of skin lesions between these areas. It should be further investigated if more inter- or intraspecific contact, e.g., due to a higher density of porpoises or contact with other cetaceans, or a poorer health status of porpoises in the southern North Sea could explain these differences

    Whale lice (Isocyamus deltobranchium & Isocyamus delphinii; Cyamidae) prevalence in odontocetes off the German and Dutch coasts – morphological and molecular characterization and health implications

    Get PDF
    Whale lice (Cyamidae; Amphipoda) are ectoparasitic crustaceans adapted to the marine environment with cetaceans as their host. There are few reports of cyamids occurring in odontocetes from the North Sea, and long-term studies are lacking. Marine mammal health was monitored along the German and Dutch coasts in the past decades, with extensive post mortem investigations conducted. The aim of this study was to analyse archived ectoparasite samples from stranded cetaceans from the North Sea (2010–2019), to determine species, prevalence and impact of ectoparasite infection. Ectoparasites were found on two cetacean species – harbour porpoises (Phocoena phocoena), as the most abundant cetacean species in the North Sea, and on a pilot whale (Globicephala melas), as a rare species here. Prevalence of ectoparasitic crustaceans in cetaceans was low: 7.6% in porpoises stranded in the Netherlands (n = 608) and 1.6% in porpoises stranded in Germany (n = 122). All whale lice infections were found on hosts with skin lesions characterised by ulcerations. Morphological investigations revealed characteristic differences between the cyamid species Isocyamus (I.) delphinii and I. deltobranchium identified. Isocyamus deltobranchium was determined in all infected harbour porpoises. I. delphinii was identified on only the pilot whale. Molecular analyses showed 88% similarity of mDNA COI sequences of I. delphinii with I. deltobranchium supporting them as separate species. Phylogenetic analyses of additional gene loci are required to fully assess the diversity and exchange of whale lice species between geographical regions as well as host specificity. Differing whale lice prevalences in porpoises stranded in the Netherlands and Germany could indicate a difference in severity of skin lesions between these areas. It should be further investigated if more inter- or intraspecific contact, e.g., due to a higher density of porpoises or contact with other cetaceans, or a poorer health status of porpoises in the southern North Sea could explain these differences

    Cost-Effectiveness of Screening Women With Familial Risk for Breast Cancer With Magnetic Resonance Imaging

    No full text
    Background To reduce mortality, women with a family history of breast cancer are often screened with mammography before age 50 years. Additional magnetic resonance imaging (MRI) improves sensitivity and is cost-effective for BRCA1/2 mutation carriers. However, for women with a family history without a proven mutation, cost-effectiveness is unclear. Methods We evaluated data of the largest prospective MRI screening study (MRISC). Between 1999 and 2007, 1597 women (8370 woman-years at risk) aged 25 to 70 years with an estimated cumulative lifetime risk of 15% to 50% for breast cancer were screened with clinical breast examination every 6 months and with annual mammography and MRI. We calculated the cost per detected and treated breast cancer. After incorporating MRISC data into a microsimulation screening analysis model (MISCAN), different s Results Forty-seven breast cancers (9 ductal carcinoma in situ) were detected. Screening with additional MRI costs 123672((sic)93639)perdetectedbreastcancer.Inincreasingagecohorts,costsperdetectedandtreatedbreastcancerdecreased,but,unexpectedly,thepercentageofMRIonlydetectedcancersincreased.ScreeningundertheMRISCschemefromage35to50yearswasestimatedtoreducebreastcancermortalityby25123 672 ((sic)93 639) per detected breast cancer. In increasing age-cohorts, costs per detected and treated breast cancer decreased, but, unexpectedly, the percentage of MRI-only detected cancers increased. Screening under the MRISC-scheme from age 35 to 50 years was estimated to reduce breast cancer mortality by 25% at 134 932 ((sic)102 164) per LYG (3.5% discounting) compared wi Conclusions Screening with MRI may improve survival for women with familial risk for breast cancer but is expensive, especially in the youngest age categories

    Survival benefit in women with BRCA1 mutation or familial risk in the MRI screening study (MRISC)

    No full text
    Adding MRI to annual mammography screening improves early breast cancer detection in women with familial risk or BRCA1/2 mutation, but breast cancer specific metastasis free survival (MFS) remains unknown. We compared MFS of patients from the largest prospective MRI Screening Study (MRISC) with 1:1 matched controls. Controls, unscreened if<50 years, and screened with biennial mammography if 50 years, were matched on risk category (BRCA1, BRCA2, familial risk), year and age of diagnosis. Of 2,308 MRISC participants, breast cancer was detected in 93 (97 breast cancers), who received MRI <2 years before breast cancer diagnosis; 33 BRCA1 mutation carriers, 18 BRCA2 mutation carriers, and 42 with familial risk. MRISC patients had smaller (87% vs. 52% <T2, p<0.001), more often node negative (69% vs. 44%, p=0.001) tumors and received less chemotherapy (39% vs. 77%, p<0.001) and hormonal therapy (14% vs. 47%, p<0.001) than controls. Median follow-up time was 9 years (range 0-14). Breast cancer metastasized in 9% (8/93) of MRISC patients and in 23% (21/93) of controls (p=0.009). MFS was better in MRISC patients overall (log-rank p=0.008, HR 0.36, 95% CI 0.16-0.80), with familial risk (log-rank p=0.024, HR: 0.21, 95% CI 0.04-0.95), and in BRCA1 mutation carriers (log-rank p=0.055, HR 0.30, 95% CI 0.08-1.13). MFS remained better in MRISC patients after lead time correction (log-rank p=0.020, HR 0.40, 95% CI 0.18-0.90). Overall survival was non-significantly better in MRISC patients (log-rank p=0.064, HR 0.51, CI 0.24-1.06). Annual screening with MRI and mammography improves metastasis free survival in women with BRCA1 mutation or familial predisposition. What's New? Adding MRI to annual mammography screening improves early breast cancer detection in women with familial risk or BRCA1/2 mutation. The impact of MRI screening on metastasis free survival remains unknown, however. For ethical reasons, all of the relevant studies so far have had a non-randomized design. To address this issue, here the authors compare breast cancer patients in the largest prospective MRI Screening Study (MRISC) with controls matched for risk group, year of diagnosis, and age at diagnosis. Annual screening with MRI and mammography improves breast cancer specific metastasis free survival significantly in women with BRCA1 mutation or familial predisposition

    Whale lice (Isocyamus deltobranchium & Isocyamus delphinii; Cyamidae) prevalence in odontocetes off the German and Dutch coasts – morphological and molecular characterization and health implications

    No full text
    Whale lice (Cyamidae; Amphipoda) are ectoparasitic crustaceans adapted to the marine environment with cetaceans as their host. There are few reports of cyamids occurring in odontocetes from the North Sea, and long-term studies are lacking. Marine mammal health was monitored along the German and Dutch coasts in the past decades, with extensive post mortem investigations conducted. The aim of this study was to analyse archived ectoparasite samples from stranded cetaceans from the North Sea (2010–2019), to determine species, prevalence and impact of ectoparasite infection. Ectoparasites were found on two cetacean species – harbour porpoises (Phocoena phocoena), as the most abundant cetacean species in the North Sea, and on a pilot whale (Globicephala melas), as a rare species here. Prevalence of ectoparasitic crustaceans in cetaceans was low: 7.6% in porpoises stranded in the Netherlands (n = 608) and 1.6% in porpoises stranded in Germany (n = 122). All whale lice infections were found on hosts with skin lesions characterised by ulcerations. Morphological investigations revealed characteristic differences between the cyamid species Isocyamus (I.) delphinii and I. deltobranchium identified. Isocyamus deltobranchium was determined in all infected harbour porpoises. I. delphinii was identified on only the pilot whale. Molecular analyses showed 88% similarity of mDNA COI sequences of I. delphinii with I. deltobranchium supporting them as separate species. Phylogenetic analyses of additional gene loci are required to fully assess the diversity and exchange of whale lice species between geographical regions as well as host specificity. Differing whale lice prevalences in porpoises stranded in the Netherlands and Germany could indicate a difference in severity of skin lesions between these areas. It should be further investigated if more inter- or intraspecific contact, e.g., due to a higher density of porpoises or contact with other cetaceans, or a poorer health status of porpoises in the southern North Sea could explain these differences
    corecore