7,619 research outputs found

    Local texture and percolative paths for long-range conduction in high critical current density TlBa₂Ca₂Cu₃O₈₊ₓ deposits

    Get PDF
    ©1994 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/64/106/1DOI:10.1063/1.110908A possible microstructural origin of the high critical current densities which have been obtained in c-axis-aligned, polycrystalline TlBa₂Ca₂Cu₃O₈₊ₓdeposits has been identified. The results of x-ray diffraction determinations of basal plane texture of Tl-1223 deposits prepared by spray pyrolysis are observed to depend on the size of the x-ray beam. Furthermore, most grain boundaries were found from transmission electron microscopy to have small misorientation angles. It is concluded that although overall the basal plane orientations are nearly random, there is a high degree of local texture indicative of colonies of similarly oriented grains. The spread in a-axis orientation within a colony is ~10°–15°. Intercolony conduction, it is suggested, may be enhanced by a percolative network of small-angle grain boundaries at colony interfaces

    Vanadium sustainability in the context of innovative recycling and sourcing development

    Get PDF
    This paper addresses the sustainability of vanadium, taking into account the current state-of-the-art related to primary and secondary sources, substitution, production, and market developments. Vanadium plays a critical role in several strategic industrial applications including steel production and probable widespread utilization in next-generation batteries. Confirming the importance of vanadium, the European Commission identified and formally registered this metal on the 2017 list of Critical Raw Materials for the European Union. The United States and Canada have also addressed the importance of this metal. Like the European economy, the American and Canadian economies rely on vanadium and are not globally independent. This recognized importance of vanadium is driving many efforts in academia and industry to develop technologies for the utilization of secondary vanadium resources using hydrometallurgical and pyrometallurgical techniques. In this paper, current efforts and their outcomes are summarized along with the most recent patents for vanadium recovery

    Differentiating between live and deadᅠMycobacterium smegmatisᅠusing autofluorescence

    Get PDF
    While there have been research efforts to find faster and more efficient diagnostic techniques for tuberculosis (TB), it is equally important to monitor a patient's response to treatment over time, especially with the increasing prevalence of multi-drug resistant (MDR) and extensively-drug resistant (XDR) TB. Between sputum smear microscopy, culture, and GeneXpert, only culture can verify viability of mycobacteria. However, it may take up to six weeks to grow Mycobacterium tuberculosis (Mtb), during which time the patient may have responded to treatment or the mycobacteria are still viable because the patient has MDR or XDR TB. In both situations, treatment incurs increased patient costs and makes them more susceptible to host-drug effects such as liver damage. Coenzyme Factor 420 (F420) is a fluorescent coenzyme found naturally in mycobacteria, with an excitation peak around 420 nm and an emission peak around 470 nm. Using Mycobacterium smegmatis, we show that live and dead mycobacteria undergo different rates of photobleaching over a period of 2 min. These preliminary experiments suggest that the different photobleaching rates could be used to help monitor a patient's response to TB treatment. In future studies, we propose to describe these experiments with Mtb as both M. smegmatis and Mtb use F420

    Monitoring the CMS strip tracker readout system

    Get PDF
    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

    Data acquisition software for the CMS strip tracker

    Get PDF
    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

    Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements

    Get PDF
    The criticality of raw materials has become an important issue in recent years. As the supply of certain raw materials is essential for technologically-advanced economies, the European Commission and other international counterparts have started several initiatives to secure reliable and unhindered access to raw materials. Such efforts include the EU Raw Materials Initiative, European Innovation Partnership on Raw Materials, US Critical Materials Institute, and others. In this paper, the authors present a multi-faceted and multi-national review of the essentials for the critical raw materials (CRMs) Co, Nb, W, and rare earth elements (REEs). The selected CRMs are of specific interest as they are considered relevant for emerging technologies and will thus continue to be of increasing major economic importance. This paper presents a \u27sustainability evaluation\u27 for each element, including essential data about markets, applications and recycling, and possibilities for substitution have been summarized and analysed. All the presented elements are vital for the advanced materials and processes upon which modern societies rely. These elements exhibit superior importance in \u27green\u27 applications and products subject to severe conditions. The annual production quantities are quite low compared to common industrial metals. Of the considered CRMs, only Co and REE gross production exceed 100 000 t. At the same time, the prices are quite high, with W and Nb being in the range of 60 USD kg(-1) and some rare earth compounds costing almost 4000 USD kg(-1). Despite valiant effort, in practice some of the considered elements are de facto irreplaceable for many specialized applications, at today\u27s technological level. Often, substitution causes a significant loss of quality and performance. Furthermore, possible candidates for substitution may be critical themselves or available in considerably low quantities. It can be concluded that one preferred approach for the investigated elements could be the use of secondary resources derived from recycling. W exhibits the highest recycling rate (37%), whereas Co (16%), Nb (11%) and rare earths (similar to 0%) lag behind. In order to promote recycling of these essential elements, financial incentives as well as an improvement of recycling technologies would be required

    Advanced microscopy analysis of the micro-nanoscale architecture of human menisci

    Get PDF
    The complex inhomogeneous architecture of the human meniscal tissue at the micro and nano scale in the absence of artefacts introduced by sample treatments has not yet been fully revealed. The knowledge of the internal structure organization is essential to understand the mechanical functionality of the meniscus and its relationship with the tissue’s complex structure. In this work, we investigated human meniscal tissue structure using up-to-date non-invasive imaging techniques, based on multiphoton fluorescence and quantitative second harmonic generation microscopy complemented with Environmental Scanning Electron Microscopy measurements. Observations on 50 meniscal samples extracted from 6 human menisci (3 lateral and 3 medial) revealed fundamental features of structural morphology and allowed us to quantitatively describe the 3D organisation of elastin and collagen fibres bundles. 3D regular waves of collagen bundles are arranged in “honeycomb-like” cells that are comprised of pores surrounded by the collagen and elastin network at the micro-scale. This type of arrangement propagates from macro to the nanoscale

    Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}

    Get PDF
    Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV collected by the CDF II detector, we present a cross section measurement of top-quark pair production with an additional radiated photon. The events are selected by looking for a lepton, a photon, significant transverse momentum imbalance, large total transverse energy, and three or more jets, with at least one identified as containing a b quark. The ttbar+photon sample requires the photon to have 10 GeV or more of transverse energy, and to be in the central region. Using an event selection optimized for the ttbar+photon candidate sample we measure the production cross section of, and the ratio of cross sections of the two samples. Control samples in the dilepton+photon and lepton+photon+\met, channels are constructed to aid in decay product identification and background measurements. We observe 30 ttbar+photon candidate events compared to the standard model expectation of 26.9 +/- 3.4 events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009. Assuming no ttbar+photon production, we observe a probability of 0.0015 of the background events alone producing 30 events or more, corresponding to 3.0 standard deviations.Comment: 9 pages, 3 figure
    corecore