48 research outputs found

    The extracellular matrix modulates olfactory neurite outgrowth on ensheathing cells

    Get PDF
    Primary olfactory axons grow along a stereotypical pathway from the nasal cavity to the olfactory bulb through an extracellular matrix rich in laminin and heparan sulfate proteoglycans (HSPGs) and bounded by the expression of chondroitin sulfate proteoglycans (CSPGs). This pathway is pioneered by olfactory ensheathing cells, which provide a substrate conducive for axon growth during early development. In the present study, we examined the effect of several extracellular matrix constituents on the spreading and migration, as well as the neurite outgrowth-promoting properties, of olfactory ensheathing cells. Laminin and Matrigel enhanced the spreading and migration of olfactory ensheathing cells and increased their neurite outgrowth-promoting activity. In contrast, HSPG and CSPG had little effect on the spreading and migration of olfactory ensheathing cells and hence did not promote olfactory neurite outgrowth. In vitro olfactory axons grew preferentially on the surface of olfactory ensheathing cells rather than the underlying extracellular matrix. We propose that olfactory ensheathing cells secrete laminin and HSPGs, which together with other cofactors, stimulate these cells to migrate and adopt a neurite outgrowth-promoting phenotype. Expression of CSPGs in the surrounding mesenchyme confines the growth of ensheathing cells, as well as the axons, which grow on the surface of these cells, to a specific pathway. Thus, the ECM indirectly modulates the growth and guidance of olfactory axons during development

    BDNF Promoterā€“Mediated Ī²-Galactosidase Expression in the Olfactory Epithelium and Bulb

    Get PDF
    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on Ī²-galactosidase (Ī²-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNFlacZneo mice). We find that Ī²-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of Ī²-gal in Ī³-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB

    Motile membrane protrusions regulate cellā€“cell adhesion and migration of olfactory ensheathing glia

    Get PDF
    Olfactory ensheathing cells (OECs) are candidates for therapeutic approaches for neural regeneration due to their ability to assist axon regrowth in central nervous system lesion models. However, little is understood about the processes and mechanisms underlying migration of these cells. We report here that novel lamellipodial protrusions, termed lamellipodial waves, are integral to OEC migration. Time-lapse imaging of migrating OECs revealed that these highly dynamic waves progress along the shaft of the cells and are crucial for mediating cell-cell adhesion. Without these waves, cell-cell adhesion does not occur and migrational rates decline. The activity of waves is modulated by both glial cell line-derived neurotrophic factor and inhibitors of the JNK and SRC kinases. Furthermore, the activity of lamellipodial waves can be modulated by Mek1, independently of leading edge activity. The ability to selectively regulate cell migration via lamellipodial waves has implications for manipulating the migratory behavior of OECs during neural repair. (C) 2007 Wiley-Liss, Inc
    corecore