138 research outputs found

    Could payments for environmental services improve rangeland management in Central Asia, West Asia and North Africa?:

    Get PDF
    "Although several institutional and management approaches that address the degradation of the rangelands have been tested in the dry areas of Central and West Asia and North Africa (CWANA), impact has been limited. Nonetheless, the development of National Action Plans to combat desertification highlights the interest of governments to tackle this issue. Payment for Environmental Services (PES) may be a viable policy option, though, to date, most PES programs have focused on the management of different resources (forests, watersheds). The purpose of this paper is to examine whether PES could be a viable option to promote sustainable rangelands management in the dry rangelands of CWANA. Specifically, it focuses on the scientific gaps and knowledge related to the local and global environmental services produced by rangelands and addresses questions related to the beneficiaries of these services. Institutional conditions necessary for the implementation of such schemes are discussed." Authors' AbstractEnvironmental services, Environmental management, Land management, Rangelands, Collective action, Property rights,

    Synchroneity of major late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms

    Get PDF
    Shallow-water carbonate systems are reliable recorders of sea level fluctuations and changes in ambient seawater conditions. Drilling results from Ocean Drilling Program (ODP) Legs 133 and 166 indicate that the timing of late Neogene sedimentary breaks triggered by sea level lowerings is synchronous in the sedimentary successions of the Queensland Plateau and the Great Bahama Bank. This synchrony indicates that these sea level changes were eustatic in origin. The carbonate platforms were also affected by contemporary, paleoceanographically controlled fluctuations in carbonate production. Paleoceanographic changes are recorded at 10.7, 3.6, and 1.7–2.0 Ma. At the Queensland Plateau, sea surface temperature shifts are documented by shifts from tropical to temperate carbonates (10.7 Ma) and vice versa (3.6 Ma); the modern tropical platform was established at 2.0–1.8 Ma. At Great Bahama Bank, changes were registered in compositional variations of platform-derived sediment, such as major occurrence of peloids (3.6 Ma) and higher rates of neritic carbonate input (1.7 Ma). The synchroneity of these changes attests to the far-field effects of modifications in the oceanographic circulation on shallow-water, low-latitude carbonate production

    Language Identification and Morphosyntactic Tagging: The Second VarDial Evaluation Campaign

    Get PDF
    We present the results and the findings of the Second VarDial Evaluation Campaign on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects. The campaign was organized as part of the fifth edition of the VarDial workshop, collocated with COLING’2018. This year, the campaign included five shared tasks, including two task re-runs – Arabic Dialect Identification (ADI) and German Dialect Identification (GDI) –, and three new tasks – Morphosyntactic Tagging of Tweets (MTT), Discriminating between Dutch and Flemish in Subtitles (DFS), and Indo-Aryan Language Identification (ILI). A total of 24 teams submitted runs across the five shared tasks, and contributed 22 system description papers, which were included in the VarDial workshop proceedings and are referred to in this report.Non peer reviewe

    ICDP Workshop on the Lake Tanganyika Scientific Drilling Project: A Late Miocene–Present Record of Climate, Rifting, and Ecosystem Evolution from the World\u27s Oldest Tropical Lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations

    Study of the reaction dynamics of Li+HF, HCl by the crossed molecular beams method

    Get PDF
    The reactions of (I) Li + HF {yields} LiF + H and (II) Li + HCl {yields} LiCl + H have been studied by the crossed molecular beams method. Angular distributions [N({theta})] of product molecules have been measured at 4 collision energies (E{sub c}) ranging from about 2 to 9 kcal/mole and time-of-flight (TOF) measurements of product velocity distribution were made at approximately E{sub c} = 3 and 9 kcal/mole for both reactions (I) and (II). The combined N({theta}) and TOF results were used to generate contour maps of lithium-halide product flux in angle and recoil velocity in the center-of-mass (c.m.) frame. For reaction (I) at E{sub c} = 3 kcal/mole the c.m. angular distribution [T({theta})] shows evidence of complex formation with near forward-backward symmetry; slightly favored backward peaking is observed. The shape of this T({theta}) indicates there is significant parallel or antiparallel spatial orientation of initial and final orbital angular momentum {rvec L} and {rvec L}', even though with H departing L' must be rather small and {rvec L} = {rvec J}', where {rvec J}' is the final rotational angular momentum vector. It is deduced that coplanar reaction geometries are strongly favored. At E{sub c} = 8.7 kcal/mole the T({theta}) of reaction (I) becomes strongly forward peaked. The product translational energy distributions P(E{sub T}') at both these collision energies give an average E{sub T}' of ~55% of the total available energy; this appears consistent with a theoretically calculated late exit barrier to reaction. The T({theta}) at E{sub c} = 2.9 and 9.2 kcal/mole for reaction (II) are forward-sideways peaked. Most of the available energy (~70%) goes into recoil velocity at both E{sub c} for LiCl formation. This suggests a late energy release for this 11 kcal/mole exoergic reaction. Both reactions (I) and (II) show evidence of no more than a minor partitioning of energy into product vibrational excitation. Integral reactive cross sections ({sigma}{sub R}) are evaluated by integrating the product distributions in the c.m. frame and using small angle nonreactive scattering of Li as an absolute calibrant. Values of {sigma}{sub R} are: for LiF formation {sigma}{sub R} ~ 0.8 {Angstrom}{sup 2} and 0.94 {Angstrom}{sup 2} at E{sub c} = 3 and 8.7 kcal/mole, while for LiCl formation {sigma}{sub R} = 27 {Angstrom}{sup 2} and 42 {Angstrom}{sup 2} at E{sub c} = 2.9 and 9.2 kcal/mole, with estimated absolute and relative uncertainties of a factor of 2, and 30%, respectively. Average opacities for reaction have been estimated from the reaction cross sections and the extent of rotational excitation of products to be about 0.1 for reaction (I) and 1 for reaction (II), for L values allowed to react. These results are discussed in some detail with regard to the kinematic constraints, reaction dynamics and potential energy surfaces for these two reactions, and related experimental and theoretical work are noted. In addition, angular distributions of nonreactive scattering of Li off HF and HCl are measured at 4 different E{sub c} each. Rainbow structure is observed at low E{sub c} and the angular distributions are fit by a spherically symmetric piecewise analytic potential. The resulting values of the potential's well depth ({epsilon}) and minimum position (r{sub m} ) are: for Li + HF {epsilon} = 0.46 kcal/mole and r{sub m} = 4.34 {Angstrom} and for Li + HCl {epsilon} = 0.32 kcal/mole and r{sub m} = 4.7 {Angstrom}. These results differ significantly from some earlier estimates based on the measurements of integral scattering cross sections

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme

    Get PDF
    Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multilayer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of accept-able parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.Peer reviewe
    corecore