464 research outputs found

    Dealing with flood damages: will prevention, mitigation and ex-post compensation provide for a resilient triangle?

    Get PDF
    There is a wealth of literature on the design of ex-post compensation mechanisms for natural disasters. However, more research needs to be done on the manner in which these mechanisms could steer citizens toward adopting individual level preventive and protection measures in the face of flood risks. This paper provides a comparative legal analysis of the financial compensation mechanisms following floods, be it through insurance, public funds or a combination of both, with an empirical focus on Belgium, the Netherlands, England and France. Similarities and differences between the methods in which these compensation mechanisms for flood damages enhance resilience are analyzed. The comparative analysis especially focuses on the link between the recovery strategy on the one hand and prevention and mitigation strategies on the other. There is great potential within the recovery strategy for promoting preventive action, for example in terms of discouraging citizens from living in high-risk areas, or encouraging the uptake of mitigation measures, such as adaptive building. However, this large potential is yet to be realized, in part due to insufficient consideration and promotion of these connections within existing legal frameworks. Recommendations are made about how the linkages between strategies can be further improved. These recommendations relate to, amongst others, the promotion of resilient reinstatement through recovery mechanisms and the removal of legal barriers preventing the establishment of link-inducing measures

    Higher dimensional abelian Chern-Simons theories and their link invariants

    Full text link
    The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions 4l+34l+3, whose parameter kk is quantized. The generalized Wilson (2l+1)(2l+1)-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of (2l+1)(2l+1)-loops, first on closed (4l+3)(4l+3)-manifolds through a novel geometric computation, then on R4l+3\mathbb{R}^{4l+3} through an unconventional field theoretic computation.Comment: 40 page

    Accumulation and deposition of triacylglycerols in the starchy endosperm of wheat grain

    Get PDF
    A combination of lipidomics, transcriptomics and bioimaging has been used to study triacylglycerol synthesis and deposition in the developing starchy endosperm of wheat. The content of TAG increased between 14 and 34 days after anthesis, from 50 to 115 mg/g dry wt and from about 35 to 175 mg/g dry wt in two experiments. The major fatty acids were C16 (palmitic C 16:0 and palmitoleic C16:1) and C18 (stearic C18:0, oleic C18:1, linoleic C18:2 and linolenic C18:3), with unsaturated fatty acids accounting for about 75-80% of the total throughout development. Linoleic acid (C18:2) was the major component at all stages and the proportion increased during development. Transcript profiling indicated that predominant route to TAG synthesis and oil accumulation is via the Kennedy pathway and diacylglycerol acyltransferase (DGAT) activity. Confocal microscopy of stained tissue sections showed that TAG accumulated in droplets concentrated in the cells below the sub-aleurone cells which are associated with protein. Transcripts encoding 16kd oleosins were also expressed, indicating that the oil droplets are stabilised by oleosin proteins

    New xenon results of Phoenix at 28 GHz

    No full text
    The classical PHOENIX 28 GHz electron cyclotron resonance ion Source (ECRIS) has been developed to prospect high pulsed multi charged lead ion (MCI lead) beams for the Large Hadron Collider (LHC) [1,2]. The goal of the experiment is to reach 1 emA pulses of Pb27+ during 0.4 ms with a 10 Hz repetition rate. This high beam current is one order of magnitude higher than the ones available nowadays. The strategy to take up this challenge is based on an increase of the radio frequency (RF) to 28 GHz and an increase of the RF power density. A new high acceptance, high resolution analysing beam line has been coupled to PHOENIX in order to study efficiently the intense beams delivered by the source. Thus, 0.6 emA of Xe20+ has been measured in the afterglow (AFG) among 9 emA analysed in the Faraday Cup (FC). The lead production is under study and a preliminary beam of 0.6 emA of Pb24+ AFG has already been obtained. The cross check of a 3D beam simulation program and measured beam characteristics enables to estimate the beam emittance to be ~ 200 mm.mrad. The project of development of an upgraded version of PHOENIX is presented (a new ECRIS named APHOENIX)

    The acceleration and storage of radioactive ions for a neutrino factory

    Full text link
    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200

    Symmetries and observables in topological gravity

    Full text link
    After a brief review of topological gravity, we present a superspace approach to this theory. This formulation allows us to recover in a natural manner various known results and to gain some insight into the precise relationship between different approaches to topological gravity. Though the main focus of our work is on the vielbein formalism, we also discuss the metric approach and its relationship with the former formalism.Comment: 34 pages; a few explanations added in subsection 2.2.1, published version of pape

    Stellar jitter from variable gravitational redshift: implications for RV confirmation of habitable exoplanets

    Get PDF
    A variation of gravitational redshift, arising from stellar radius fluctuations, will introduce astrophysical noise into radial velocity measurements by shifting the centroid of the observed spectral lines. Shifting the centroid does not necessarily introduce line asymmetries. This is fundamentally different from other types of stellar jitter so far identified, which do result from line asymmetries. Furthermore, only a very small change in stellar radius, ~0.01%, is necessary to generate a gravitational redshift variation large enough to mask or mimic an Earth-twin. We explore possible mechanisms for stellar radius fluctuations in low-mass stars. Convective inhibition due to varying magnetic field strengths and the Wilson depression of starspots are both found to induce substantial gravitational redshift variations. Finally, we investigate a possible method for monitoring/correcting this newly identified potential source of jitter and comment on its impact for future exoplanet searches.Comment: 6 pages, 1 figure, 1 tabl

    Recent variability of the solar spectral irradiance and its impact on climate modelling

    Get PDF
    International audienceThe lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate.We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities.We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE measurements. However, the integral of the SSI computed with this model over the entire spectral range does not reproduce the measured cyclical changes of the total solar irradiance, which is an essential requisite for realistic evaluations of solar effects on the Earth's climate in CCMs.We show that within the range provided by the recent SSI observations and semi-empirical models discussed here, the NRLSSI model and SORCE observations represent the lower and upper limits in the magnitude of the SSI solar cycle variation.The results of the CCM simulations, forced with the SSI solar cycle variations estimated from the NRLSSI model and from SORCE measurements, show that the direct solar response in the stratosphere is larger for the SORCE than for the NRLSSI data. Correspondingly, larger UV forcing also leads to a larger surface response.Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI data sets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
    • …
    corecore