195 research outputs found
Giant shift upon strain on the fluorescence spectrum of VNNB color centers in h-BN
We study the effect of strain on the physical properties of the nitrogen
antisite-vacancy pair in hexagonal boron nitride (-BN), a color center that
may be employed as a quantum bit in a two-dimensional material. With group
theory and ab-initio analysis we show that strong electron-phonon coupling
plays a key role in the optical activation of this color center. We find a
giant shift on the zero-phonon-line (ZPL) emission of the nitrogen
antisite-vacancy pair defect upon applying strain that is typical of -BN
samples. Our results provide a plausible explanation for the experimental
observation of quantum emitters with similar optical properties but widely
scattered ZPL wavelengths and the experimentally observed dependence of the ZPL
on the strain.Comment: 7 pages, 3 figure
A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity.
Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation
Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis
Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis
Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids
Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions
Association of vitamin D status with arterial blood pressure and hypertension risk:A mendelian randomisation study
Background:Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. Methods: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. Findings: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). Interpretation: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study. </p
Impact of maternal body mass index and gestational weight gain on pregnancy complications : an individual participant data meta-analysis of European, North American and Australian cohorts
Objective To assess the separate and combined associations of maternal pre-pregnancy body mass index (BMI) and gestational weight gain with the risks of pregnancy complications and their population impact. Design Individual participant data meta-analysis of 39 cohorts. Setting Europe, North America, and Oceania. Population 265 270 births. Methods Information on maternal pre-pregnancy BMI, gestational weight gain, and pregnancy complications was obtained. Multilevel binary logistic regression models were used. Main outcome measures Gestational hypertension, pre-eclampsia, gestational diabetes, preterm birth, small and large for gestational age at birth. Results Higher maternal pre-pregnancy BMI and gestational weight gain were, across their full ranges, associated with higher risks of gestational hypertensive disorders, gestational diabetes, and large for gestational age at birth. Preterm birth risk was higher at lower and higher BMI and weight gain. Compared with normal weight mothers with medium gestational weight gain, obese mothers with high gestational weight gain had the highest risk of any pregnancy complication (odds ratio 2.51, 95% CI 2.31- 2.74). We estimated that 23.9% of any pregnancy complication was attributable to maternal overweight/obesity and 31.6% of large for gestational age infants was attributable to excessive gestational weight gain. Conclusions Maternal pre-pregnancy BMI and gestational weight gain are, across their full ranges, associated with risks of pregnancy complications. Obese mothers with high gestational weight gain are at the highest risk of pregnancy complications. Promoting a healthy pre-pregnancy BMI and gestational weight gain may reduce the burden of pregnancy complications and ultimately the risk of maternal and neonatal morbidity.Peer reviewe
- …