11 research outputs found

    Isolation and characterization of two murine P1-class glutathione s-transferases

    Get PDF

    The Cycad Genotoxin MAM Modulates Brain Cellular Pathways Involved in Neurodegenerative Disease and Cancer in a DNA Damage-Linked Manner

    Get PDF
    Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O6-methyldeoxyguanosine lesions, O6-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O6-mG DNA methyltransferase (MGMT) showed elevated O6-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease

    CHF1/Hey2 Promotes Physiological Hypertrophy in Response to Pressure Overload through Selective Repression and Activation of Specific Transcriptional Pathways

    No full text
    We have previously found that CHF1/Hey2 prevents the development of phenylephrine-induced cardiac hypertrophy. To determine the role of CHF1/Hey2 in pressure overload hypertrophy, we performed ascending aortic banding on wild-type and transgenic mice overexpressing CHF1/Hey2 in the myocardium. We found that both wild-type and transgenic mice developed increased ventricular weight to body weight ratios 1 week after aortic banding. Wild-type mice also developed decreased fractional shortening after 1 week when compared to preoperative echocardiograms and sham-operated controls. Transgenic mice, in comparison, demonstrated preserved fractional shortening. Histological examination of explanted heart tissue demonstrated extensive fibrosis in wild-type hearts, but minimal fibrosis in transgenic hearts. TUNEL staining demonstrated increased apoptosis in the wild-type hearts but not in the transgenic hearts. Exposure of cultured neonatal myocytes from wild-type and transgenic animals to hydrogen peroxide, a potent inducer of apoptosis, demonstrated increased apoptosis in the wild-type cells. Gene Set Analysis of microarray data from wild-type and transgenic hearts 1 week after banding revealed suppression and activation of multiple pathways involving apoptosis, cell signaling, and biosynthesis. These findings demonstrate that CHF1/Hey2 promotes physiological over pathological hypertrophy through suppression of apoptosis and regulation of multiple transcriptional pathways. These findings also suggest that CHF1/Hey2 and its downstream pathways provide a variety of targets for novel heart failure drug discovery, and that genetic polymorphisms in CHF1/Hey2 may affect susceptibility to hypertrophy and heart failure

    The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis

    No full text
    Inhalation of multiwalled carbon nanotubes (MWCNTs) during their manufacture or incorporation into various commercial products may cause lung inflammation, fibrosis, and oxidative stress in exposed workers. Some workers may be more susceptible to these effects because of differences in their ability to synthesize the major antioxidant and immune system modulator glutathione (GSH). Accordingly, in this study we examined the influence of GSH synthesis and gender on MWCNT-induced lung inflammation in C57BL/6 mice. GSH synthesis was impaired through genetic manipulation of Gclm, the modifier subunit of glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis. Twenty-four hours after aspirating 25 µg of MWCNTs, all male mice developed neutrophilia in their lungs, regardless of Gclm genotype. However, female mice with moderate (Gclm heterozygous) and severe (Gclm null) GSH deficiencies developed significantly less neutrophilia. We found no indications of MWCNT-induced oxidative stress as reflected in the GSH content of lung tissue and epithelial lining fluid, 3-nitrotyrosine formation, or altered mRNA or protein expression of several redox-responsive enzymes. Our results indicate that GSH-deficient female mice are rendered uniquely susceptible to an attenuated neutrophil response. If the same effects occur in humans, GSH-deficient women manufacturing MWCNTs may be at greater risk for impaired neutrophil-dependent clearance of MWCNTs from the lung. In contrast, men may have effective neutrophil-dependent clearance, but may be at risk for lung neutrophilia regardless of their GSH levels

    A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging

    Get PDF
    Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging
    corecore