1,773 research outputs found

    Understanding BL Lac objects Structural & kinematic mode changes in the BL Lac object PKS 0735+178

    Full text link
    Context. We present evidence that parsec-scale jets in BL Lac objects may be significantly distinct in kinematics from their counterparts in quasars. We argued this previously for the BL lac sources 1803+784 and 0716+714, report here a similar pattern for another well-known BL Lac object, PKS 0735+178, whose nuclear jet is found to exhibit kinematics atypical of quasars. Aims. A detailed study of the jet components' motion reveals that the standard AGN paradigm of apparent superluminal motion does not always describe the kinematics in BL Lac objects. We study 0735+178 here to augment and improve the understanding of the peculiar motions in the jets of BL Lac objects as a class. Methods. We analyzed 15 GHz VLBA (Very Long Baseline Array) observations (2cm/MOJAVE survey) performed at 23 epochs between 1995.27 and 2008.91. Results. We found a drastic structural mode change in the VLBI jet of 0735+178, between 2000.4 and 2001.8 when its twice sharply bent trajectory turned into a linear shape.We further found that this jet had undergone a similar transition sometime between December 1981 and June 1983. A mode change, occurring in the reverse direction (between mid-1992 and mid-1995) has already been reported in the literature. These structural mode changes are found to be reflected in changed kinematical behavior of the nuclear jet, manifested as an apparent superluminal motion and stationarity of the radio knots. In addition, we found the individual mode changes to correlate in time with the maxima in the optical light curve. The last two transitions occurred before a (modest) radio flare. The behavior of this pc-scale jet appears to favor a scenario involving non-ballistic motions of the radio knots, produced by the precession of a continuous jet within the ambient medium.Comment: Accepted for publication in A&A (Abstract reduced for astro-ph

    Spectral and morphological analysis of the remnant of Supernova 1987A with ALMA & ATCA

    Get PDF
    We present a comprehensive spectral and morphological analysis of the remnant of Supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ\lambda 3.2 mm to 450 μ\mum), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (Sνν0.73S_{\nu}\propto\nu^{-0.73}) and the thermal component originating from dust grains at T22T\sim22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localised west of the SN site, as the spectral analysis yields 0.4α0.1-0.4\lesssim\alpha\lesssim-0.1 across the western regions, with α0\alpha\sim0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.Comment: ApJ accepted. 21 pages, emulateapj. References update

    Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions

    Get PDF
    Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range 1.73η1.32-1.73 \le \eta \le 1.32 are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley BEVALAC and for 200 AA\cdotGeV/cc p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical ``back-to-back'' correlations, a ``side-by-side'' correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.Comment: 7 pages, figures included, complete postscript available at ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys. Lett.

    The Spitzer Survey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid- and Far-Infrared Wavebands

    Get PDF
    We present the initial results from the Spitzer Survey of the Small Magellanic Cloud (S3MC), which imaged the star-forming body of the Small Magellanic Cloud (SMC) in all seven MIPS and IRAC wavebands. We find that the F_8/F_24 ratio (an estimate of PAH abundance) has large spatial variations and takes a wide range of values that are unrelated to metallicity but anticorrelated with 24 um brightness and F_24/F_70 ratio. This suggests that photodestruction is primarily responsible for the low abundance of PAHs observed in star-forming low-metallicity galaxies. We use the S3MC images to compile a photometric catalog of ~400,000 mid- and far-infrared point sources in the SMC. The sources detected at the longest wavelengths fall into four main categories: 1) bright 5.8 um sources with very faint optical counterparts and very red mid-infrared colors ([5.8]-[8.0]>1.2), which we identify as YSOs. 2) Bright mid-infrared sources with mildly red colors (0.16<[5.8]-[8.0]<0.6), identified as carbon stars. 3) Bright mid-infrared sources with neutral colors and bright optical counterparts, corresponding to oxygen-rich evolved stars. And, 4) unreddened early B stars (B3 to O9) with a large 24 um excess. This excess is reminiscent of debris disks, and is detected in only a small fraction of these stars (<5%). The majority of the brightest infrared point sources in the SMC fall into groups one to three. We use this photometric information to produce a catalog of 282 bright YSOs in the SMC with a very low level of contamination (~7%).Comment: Accepted for publication in The Astrophysical Journal. Given the draconian figure file-size limits implemented in astro-ph, readers are encouraged to download the manuscript with full quality images from http://celestial.berkeley.edu/spitzer/publications/s3mcsurvey.pd

    Line-profile tomography of exoplanet transits -- II. A gas-giant planet transiting a rapidly-rotating A5 star

    Full text link
    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the lightcurve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33; V=8.3, v sin i = 86 km/sec). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit we directly derive the size of the planet, the inclination and obliquity of its orbital plane, and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1 Jupiter masses on the planet. We also find evidence of a third body of sub-stellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.Comment: 9 pages, 6 figures, accepted for publication in MNRA

    Experimental studies of proton-neutron mixed symmetry states in the mass A ∼ 130 region

    Get PDF
    Considerable progress has been achieved recently in the experimental investigation of quadrupole-collective isovector excitations in the valence shell, the so called mixed-symmetry states (MSSs), in the mass A ≈ 130 region. This is due to a new experimental technique for study MSSs which is based on the observation of low-multiplicity γ-ray events from inverse kinematics Coulomb excitation with the large 4π spectrometer, such as Gammasphere. The obtained experimental information for the MSSs of stable N 80 isotones indicates that for low-collective vibrational nuclei the underlying single-particle structure can be the most important factor for preserving or fragmenting the MSSs through the mechanism of shell stabilization. The evolution of the MSSs from 134Xe to 138Ce is also used to determine the local strength of the proton-neutron interaction derived for first time from states with symmetric and antisymmetric nature

    Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement

    Get PDF
    The objective of this study was to investigate whether metabolic tumor volume (MTV) by positron emission tomography (PET) can be a potential prognostic tool when compared with Ann Arbor stage, in stages II and III nodal diffuse large B cell lymphoma (DLBCL). We evaluated 169 patients with nodal stages II and III DLBCL who underwent measurements with PET prior to rituximab combined with cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP). Cutoff point of MTV was measured using the receiver operating characteristic (ROC) curve. During a median period of 36 months, stage II was 59.2% and III was 40.8%. Using the ROC curve, the MTV of 220 cm3 was the cutoff value. The low MTV group (<220 cm3) had longer progression-free survival (PFS) and overall survival (OS), compared with the high MTV group (≥220 cm3) (p < 0.001, p < 0.001). Stage II patients had longer survival than those in stage III (PFS, p = 0.011; OS, p = 0.001). The high MTV group had lower PFS and OS patterns, regardless of stage, compared with the low MTV group (p < 0.001, p < 0.001). Multivariate analysis revealed an association of the high MTV group with lower PFS and OS (PFS, hazard ratio (HR) = 5.300, p < 0.001; OS, HR = 7.009, p < 0.001), but not stage III (PFS, p = 0.187; OS, p = 0.054). Assessment of MTV by PET had more potential predictive power than Ann Arbor stage in the patients that received R-CHOP

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA
    corecore