Context. We present evidence that parsec-scale jets in BL Lac objects may be
significantly distinct in kinematics from their counterparts in quasars. We
argued this previously for the BL lac sources 1803+784 and 0716+714, report
here a similar pattern for another well-known BL Lac object, PKS 0735+178,
whose nuclear jet is found to exhibit kinematics atypical of quasars. Aims. A
detailed study of the jet components' motion reveals that the standard AGN
paradigm of apparent superluminal motion does not always describe the
kinematics in BL Lac objects. We study 0735+178 here to augment and improve the
understanding of the peculiar motions in the jets of BL Lac objects as a class.
Methods. We analyzed 15 GHz VLBA (Very Long Baseline Array) observations
(2cm/MOJAVE survey) performed at 23 epochs between 1995.27 and 2008.91.
Results. We found a drastic structural mode change in the VLBI jet of 0735+178,
between 2000.4 and 2001.8 when its twice sharply bent trajectory turned into a
linear shape.We further found that this jet had undergone a similar transition
sometime between December 1981 and June 1983. A mode change, occurring in the
reverse direction (between mid-1992 and mid-1995) has already been reported in
the literature. These structural mode changes are found to be reflected in
changed kinematical behavior of the nuclear jet, manifested as an apparent
superluminal motion and stationarity of the radio knots. In addition, we found
the individual mode changes to correlate in time with the maxima in the optical
light curve. The last two transitions occurred before a (modest) radio flare.
The behavior of this pc-scale jet appears to favor a scenario involving
non-ballistic motions of the radio knots, produced by the precession of a
continuous jet within the ambient medium.Comment: Accepted for publication in A&A (Abstract reduced for astro-ph