6 research outputs found
Europe's confused transmutation: the realignment of moral cartography in Juan de la Cosa's Mappa Mundi (1500)
Following the voyages of Christopher Columbus, John Cabot, Alonso de Ojeda and Amerigo Vespucci in the last decade of the fifteenth century, the New World of the Americas entered the cartographic and moral consciousness of Europe. In the 1500 mappa mundi of Juan de la Cosa, navigator and map-maker, we see Europe as a hybrid moral entity, a transitional blend of the medieval and the modern at the crossroads between two mappings of Europe. This paper argues that the Juan De la Cosa map represents a blurred transition between map-making traditions and a mixed moral rhetoric of European identity. The De la Cosa map operates across two sets of imagined axes: held horizontally, the map is set to a Ptolemaic grid with Europe straddling the Prime Meridian, and yet when held vertically it presents a medieval moral continuum in which the Americas occupy an ascendant position, a verdant new Jerusalem in contrast to the Babylon of the Old World. Europe is both drawn to the centre of a new world order, and also pushed to the moral margins in an echo of the medieval mappa mundi still imperfectly resolved
Facing climate change:Biotechnology of iconic mediterranean woody crops
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange ( Citrus sinensis) and clementine ( Citrus clementina), olive tree ( Olea europaea) and grapevine ( Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs
Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology
The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction