69 research outputs found

    Quantitative Analysis of Retinal Structure Using Spectral-Domain Optical Coherence Tomography in RPGR-Associated Retinopathy

    Get PDF
    PURPOSE: To quantify retinal structure and progression using spectral-domain optical coherence tomography (SDOCT) in patients with retinitis pigmentosa (RP) associated with retinitis pigmentosa GTPase regulator gene (RPGR) mutations. DESIGN: Retrospective observational case series. METHODS: Setting: Moorfields Eye Hospital, London, United Kingdom. Subjects: Both eyes of 32 patients. SDOCT follow-up period of >1 year (3.1 ± 1.4 years). Main Outcome Measures: Ellipsoid zone (EZ) width (EZW) and outer nuclear layer (ONL) and inner retinal layer (IRL) thickness measurements. Progression rates, interocular symmetry, and association with age and genotype were investigated. RESULTS: Significant differences were observed between baseline and final measurements of EZW and ONL thickness, but not for IRL thickness. Baseline and final EZWs were 2438 ± 1646 μm and 1901 ± 1423 μm for right eyes (P < .0001); 2420 ± 1758 μm and 1922 ± 1482 μm for left eyes (P < .0001). EZW constriction rates were 176.6 ± 130.1 μm/year and 173.1 ± 146.8 μm/year for right and left eyes. ONL thinning rates were 2.58 ± 2.85 μm/year and 2.52 ± 3.54 μm/year for right and left eyes. Interocular differences in EZW and ONL progression were not significant (P = .8609 and P = .6735, respectively). Strong correlations were found between EZW constriction rates of right and left eyes (rs = 0.627, P = .0002) and between EZW constriction and baseline EZW (rs = 0.714, P < .0001). There was moderate negative correlation between EZW constriction and age (rs = −0.532, P < .0001). Correlation between ONL thinning and age was not significant, as were differences between EZW and ONL progression rates with respect to genotype. CONCLUSIONS: This study provides SDOCT progression rates for RPGR-associated RP. There is overall interocular symmetry with implications for future treatment trials where 1 eye could serve as a control

    Quantitative Analysis of Hyperautofluorescent Rings to Characterize the Natural History and Progression in Rpgr-associated Retinopathy

    Get PDF
    PURPOSE: Quantitative analysis of hyperautofluorescent rings and progression in subjects with retinitis pigmentosa associated with retinitis pigmentosa GTPase regulator (RPGR) gene mutations. METHODS: Prospective observational study of 46 subjects. Ring area, horizontal and vertical diameter measurements taken from outer and inner ring borders. Intraobserver repeatability, baseline measurements, progression rates, interocular symmetry, and association with age and genotype were investigated. RESULTS: Baseline ring area was 11.8 ± 13.4 mm and 11.4 ± 13.2 mm for right and left eyes, respectively, with very strong interocular correlation (r = 0.9398; P < 0.0001). Ring area constriction was 1.5 ± 2.0 mm/year and 1.3 ± 1.9 mm/year for right and left eyes, respectively, with very strong interocular correlation (r = 0.878, P < 0.0001). Baseline ring area and constriction rate correlated negatively with age (r = -0.767; P < 0.0001 and r = -0.644, P < 0.0001, respectively). Constriction rate correlated strongly with baseline area (r = 0.850, P < 0.0001). Age, but not genotype, exerted a significant effect on constriction rates (P < 0.0001), with greatest rates of progression seen in younger subjects. An exponential decline overall was found. CONCLUSION: This study provides disease-specific baseline values and progression rates together with a repeatability assessment of fundus autofluorescence metrics. Our findings can guide future treatment trials and contribute to the clinical care of patients with RPGR-associated retinitis pigmentosa

    Natural History Study of Retinal Structure, Progression and Symmetry Using Ellipzoid Zone Metrics in RPGR-Associated Retinopathy

    Get PDF
    PURPOSE: Quantitative study of retinal structure, progression rates and interocular symmetry in RPGR-associated retinopathy using spectral domain optical coherence tomography (SD-OCT). DESIGN: Prospective, observational cohort study. METHODS: SETTING: Moorfields Eye Hospital, London, UK SUBJECTS: 38 subjects MAIN OUTCOME MEASURE: Two SD-OCT-derived ellipzoid zone (EZ) metrics with repeatability assessments. EZ width (EZW) measurements were made on transfoveal line scans. En face images of the EZ area (EZA) were generated from high density macular volume scans and quantified. Baseline size, progression rate, symmetry, associations with age and genotype, and baseline structure-function correlation were investigated. RESULTS: Baseline EZW and EZA were 1963.6 μm and 3.70 mm2 respectively. Mean EZW progression rate was 233.6 μm/year and mean EZA rate was 0.67 mm2/year. Relative Interocular Difference as an index of symmetry was 3% for both metrics indicating good baseline symmetry in general although significant variation existed across the cohort. ANOVA results demonstrated a significant effect of age but not genotype on EZ dimension and progression rates. Larger EZ dimension and greater progression were seen in younger subjects. A positive correlation between EZ dimension and progression was evident. Overall exponential decline rates of 8.2% with EZW and 15.5% with EZA were obtained. Good functional correlation was found with EZW demonstrating stronger correlation, however EZA correlation with function was also signficant. CONCLUSIONS: EZ metrics are sensitive structural biomarkers for measuring residual extent and progression in RPGR-associated retinopathy. Our elucidation of the natural history will provide clinicians and patients with more knowledge about the condition, and inform the design and interpretation of interventional trials

    Cellular Imaging Of The Tapetal-like Reflex In Carriers Of RPGR-associated Retinopathy

    Get PDF
    PURPOSE: To examine the features of the tapetal-like reflex (TLR) in female carriers of RPGR-associated retinopathy by means of adaptive optics scanning light ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography. METHODS: Nine molecularly confirmed RPGR carriers and three healthy controls underwent ocular examination and the following retinal imaging modalities: color photography, near-infrared reflectance, fundus autofluorescence, spectral domain optical coherence tomography, and AOSLO. After identifying TLR areas across all imaging modalities, normalized local contrast of outer retinal bands on spectral domain optical coherence tomography was calculated and AOSLO-acquired photoreceptor mosaic analysis was performed. RESULTS: Seven carriers had TLR areas, which colocalized with increased rod photoreceptor reflectivity on confocal AOSLO and reduced cone photoreceptor densities. Parafoveal TLR areas also exhibited reduced local contrast (i.e., increased reflectivity) of the outer retinal bands on spectral domain optical coherence tomography (inner segment ellipsoid zone and outer segment interdigitation zone). Healthy controls did not show TLR. CONCLUSION: The cellular resolution provided by AOSLO affords the characterization of the photoreceptor mosaic in RPGR carriers with a TLR. Features revealed include reduced cone densities, increased cone inner segment diameters, and increased rod outer segment reflectivity

    Characterization of Visual Function, Interocular Variability and Progression Using Static Perimetry-Derived Metrics in RPGR-Associated Retinopathy

    Get PDF
    PURPOSE: To characterize bilateral visual function, interocular variability and progression by using static perimetry–derived volumetric and pointwise metrics in subjects with retinitis pigmentosa associated with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. METHODS: This was a prospective longitudinal observational study of 47 genetically confirmed subjects. Visual function was assessed with ETDRS and Pelli-Robson charts; and Octopus 900 static perimetry using a customized, radially oriented 185-point grid. Three-dimensional hillof-vision topographic models were produced and interrogated with the Visual Field Modeling and Analysis software to obtain three volumetric metrics: VTotal, V30, and V5. These were analyzed together with Octopus mean sensitivity values. Interocular differences were assessed with the Bland-Altman method. Metric-specific exponential decline rates were calculated. RESULTS: Baseline symmetry was demonstrated by relative interocular difference values of 1% for VTotal and 8% with V30. Degree of symmetry varied between subjects and was quantified with the subject percentage interocular difference (SPID). SPID was 16% for VTotal and 17% for V30. Interocular symmetry in progression was greatest when quantified by VTotal and V30, with 73% and 64% of subjects possessing interocular rate differences smaller in magnitude than respective annual progression rates. Functional decline was evident with increasing age. An overall annual exponential decline of 6% was evident with both VTotal and V30. CONCLUSIONS: In general, good interocular symmetry exists; however, there was both variation between subjects and with the use of various metrics. Our findings will guide patient selection and design of RPGR treatment trials, and provide clinicians with specific prognostic information to offer patients affected by this conditio

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying into b-quarks at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons produced in association with one or two b -quarks and decaying to b -quark pairs is presented using 27.8  fb − 1 of √ s = 13  TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider during 2015 and 2016. No evidence of a signal is found. Upper limits on the heavy neutral Higgs boson production cross section times its branching ratio to b ¯ b are set, ranging from 4.0 to 0.6 pb at 95% confidence level over a Higgs boson mass range of 450 to 1400 GeV. Results are interpreted within the two-Higgs-doublet model and the minimal supersymmetric Standard Model

    Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at √=13TeV

    Get PDF
    The paper presents a measurement of the Standard Model Higgs Boson decaying to b-quark pairs in the vector boson fusion (VBF) production mode. A sample corresponding to 126 fb−1 of s√=13TeV proton–proton collision data, collected with the ATLAS experiment at the Large Hadron Collider, is analyzed utilizing an adversarial neural network for event classification. The signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model for VBF Higgs production, is measured to be 0.95+0.38−0.36 , corresponding to an observed (expected) significance of 2.6 (2.8) standard deviations from the background only hypothesis. The results are additionally combined with an analysis of Higgs bosons decaying to b-quarks, produced via VBF in association with a photon

    Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV

    Get PDF
    This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7

    Search for excited electrons singly produced in proton–proton collisions at \sqrt{s} = 13 TeV with the ALAS experiment at the LHC

    Get PDF
    A search for excited electrons produced in pp collisions at s√ = 13 TeV via a contact interaction qq¯→ee∗ is presented. The search uses 36.1 fb −1 of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron into an electron and a pair of quarks ( eqq¯ ) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a W boson ( νW ) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying W boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the pp→ee∗→eeqq¯ and pp→ee∗→eνW production cross sections as a function of the excited electron mass me∗ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter Λ of the model as a function of me∗ . For me∗<0.5 TeV , the lower bound for Λ is 11 TeV . In the special case of me∗=Λ , the values of me∗<4.8 TeV are excluded. The presented limits on Λ are more stringent than those obtained in previous searches
    corecore