51 research outputs found

    Stages of Concern: Vorerfahrungen, Interessen und Einstellungen von LehrkrĂ€ften in Bezug auf Lehr-Lernplattform-gestĂŒtztem Unterricht in den Naturwissenschaften

    Get PDF
    The pandemic-related measures highlighted the value of digitalization as a major issue in the education sector. Digital teaching units on teaching-learning platforms can make a decisive contribution in this field. In this study, data collected in summer 2019 on the affective-cognitive processes of examinations of science education using digitally formatted units, implemented on teaching-learning platforms and the particular usage of teaching-learning platforms themselves are re-analysed (N = 83). The study relies on the Stages of Concern (SoC) as a standardized instrument. A cluster analysis helps to identify three specific SoC-profiles in terms of the specific approach to and handling with the digital teaching-learning platforms. Common to all these profiles is that they concentrate on the impact on teaching and the students’ activities. In addition, the analysis shows a traditional use of the platforms in school (subgroup, N = 44 for teachers with access to teaching-learning platforms in school). Furthermore, correlation analyses show that there is no correlation between the type of use and the SoC-Profiles, but there is a correlation between the frequency of use and the SoC-profilesDie pandemiebedingten Maßnahmen haben den Wert der Digitalisierung im Bildungssektor deutlich gemacht. Digitale Unterrichtseinheiten auf Lehr-Lernplattformen können dazu einen entscheidenden Beitrag leisten. In der hier vorgelegten Studie werden Daten aus dem Sommer 2019 zu der affektiv-kognitiven Auseinandersetzung von naturwissenschaftlichen LehrkrĂ€ften mit digitalen Unterrichtseinheiten auf Lehr-Lernplattformen sowie deren Nutzung und FortbildungswĂŒnsche neu analysiert (N = 83). Die Erhebung der affektiv-kognitiven Auseinandersetzung erfolgte mit dem standardisierten Instrument Stages of Concern (SoC). Mithilfe einer Clusteranalyse werden drei spezifische SoC-Profile in Bezug auf den Einsatz digitaler Unterrichtseinheiten auf einer Lehr-Lernplattform identifiziert. Dabei wird deutlich, dass allen Profilen die BeschĂ€ftigung mit der Auswirkung auf den Unterricht und auf die SchĂŒlerinnen und SchĂŒler gemein ist. Zudem wird gezeigt, dass der Einsatz von Lehr-Lernplattformen vor der Pandemie eher traditionell geprĂ€gt war (Subgruppe, N = 44 fĂŒr LehrkrĂ€fte mit Zugang in der Schule zu einer Lehr-Lernplattform). Zusammenhangsanalysen zeigen des Weiteren, dass zwischen der Nutzungsart und den SoC-Profilen kein Zusammenhang festzustellen ist, ein solcher aber zwischen der NutzungshĂ€ufigkeit und den SoC-Profilen besteh

    IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γΎ T Cells

    Get PDF
    Summary: Interleukin-38 (IL-38) is a cytokine of the IL-1 family with a role in chronic inflammation. However, its main cellular targets and receptors remain obscure. IL-38 is highly expressed in the skin and downregulated in psoriasis patients. We report an investigation in cellular targets of IL-38 during the progression of imiquimod-induced psoriasis. In this model, IL-38 knockout (IL-38 KO) mice show delayed disease resolution with exacerbated IL-17-mediated inflammation, which is reversed by the administration of mature IL-38 or γΎ T cell-receptor-blocking antibodies. Mechanistically, X-linked IL-1 receptor accessory protein-like 1 (IL1RAPL1) is upregulated upon γΎ T cell activation to feedforward-amplify IL-17 production and is required for IL-38 to suppress γΎ T cell IL-17 production. Accordingly, psoriatic IL1RAPL1 KO mice show reduced inflammation and IL-17 production by γΎ T cells. Our findings indicate a role for IL-38 in the regulation of γΎ T cell activation through IL1RAPL1, with consequences for auto-inflammatory disease. : Han et al. report that genetic depletion of IL-38 in mice delays the resolution of imiquimod-induced psoriasis by increasing the production of the inflammatory cytokine IL-17A by skin-infiltrating T cells. Depleting these T cells or the receptor that is targeted by IL-38 reduces psoriatic skin inflammation. Keywords: IL-38, IL1RAPL1, IL-17, γΎ T cells, psoriasis, inflammatio

    Type of vaccine and immunosuppressive therapy but not diagnosis critically influence antibody response after COVID-19 vaccination in patients with rheumatic disease

    Get PDF
    Objective: The development of sufficient COVID-19 vaccines has been a big breakthrough in fighting the global SARS-CoV-2 pandemic. However, vaccination effectiveness can be reduced in patients with autoimmune rheumatic diseases (AIRD). The aim of this study was to identify factors that lead to a diminished humoral vaccination response in patients with AIRD. Methods: Vaccination response was measured with a surrogate virus neutralisation test and by testing for antibodies directed against the receptor-binding-domain (RBD) of SARS-CoV-2 in 308 fully vaccinated patients with AIRD. In addition, 296 immunocompetent participants were investigated as a control group. Statistical adjusted analysis included covariates with a possible influence on antibody response. Results: Patients with AIRD showed lower antibody responses compared with immunocompetent individuals (median neutralising capacity 90.8% vs 96.5%, p<0.001; median anti-RBD-IgG 5.6 S/CO vs 6.7 S/CO, p<0.001). Lower antibody response was significantly influenced by type of immunosuppressive therapy, but not by rheumatic diagnosis, with patients under rituximab therapy developing the lowest antibody levels. Patients receiving mycophenolate, methotrexate or janus kinase inhibitors also showed reduced vaccination responses. Additional negative influencing factors were vaccination with AZD1222, old age and shorter intervals between the first two vaccinations. Conclusion: Certain immunosuppressive therapies are associated with lower antibody responses after vaccination. Additional factors such as vaccine type, age and vaccination interval should be taken into account. We recommend antibody testing in at-risk patients with AIRD and emphasise the importance of booster vaccinations in these patients

    Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study

    Get PDF
    Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear. Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts. Findings: The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies. Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established. Funding: Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung fĂŒr Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny

    An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles

    Get PDF
    Currently, the complete chemical characterization of nanoparticles (< 100 nm) represents an analytical challenge, since these particles are abundant in number but have negligible mass. Several methods for particle-phase characterization have been recently developed to better detect and infer more accurately the sources and fates of sub-100 nm particles, but a detailed comparison of different approaches is missing. Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of α-pinene ozonolysis at −50, −30, and −10 ∘C and intercompare the results measured by different techniques. The experiments were performed at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). The chemical composition was measured simultaneously by four different techniques: (1) thermal desorption–differential mobility analyzer (TD–DMA) coupled to a NO3−^-_3 chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) mass spectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to an I−^− high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS), (3) extractive electrospray Na+^+ ionization time-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis of filters (FILTER) using ultra-high-performance liquid chromatography (UHPLC) and heated electrospray ionization (HESI) coupled to an Orbitrap high-resolution mass spectrometer (HRMS). Intercomparison was performed by contrasting the observed chemical composition as a function of oxidation state and carbon number, by estimating the volatility and comparing the fraction of volatility classes, and by comparing the thermal desorption behavior (for the thermal desorption techniques: TD–DMA and FIGAERO) and performing positive matrix factorization (PMF) analysis for the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences: thermal decomposition, aging, sampling artifacts, etc. We applied PMF analysis and found insights of thermal decomposition in the TD–DMA and the FIGAERO

    Synergistic HNO3_{3}–H2_{2}SO4_{4}–NH3_{3} upper tropospheric particle formation

    Get PDF
    New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)1,2,3,4^{1,2,3,4}. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3_{3}–H2_{2}SO4_{4}–NH3_{3} nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere

    High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures

    Get PDF
    Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2_{2}SO4_{4}). Despite their importance, accurate prediction of MSA and H2_{2}SO4_{4} from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to −10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2_{2}SO4_{4} production is modestly affected. This leads to a gas-phase H2_{2}SO4_{4}-to-MSA ratio (H2_{2}SO4_{4}/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3_{3}S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2–10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx_{x} effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2_{2}SO4_{4}/MSA measurements

    Molecular understanding of the suppression of new-particle formation by isoprene

    Get PDF
    Nucleation of atmospheric vapours produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapours. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly oxygenated dimers with 19 or 20 carbon atoms - which drive particle nucleation and early growth - while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C-20 and C-15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2 center dot) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene = monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C-15 dimers contribute to secondary organic aerosol, and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH center dot) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene-derived RO2 center dot radicals that reduce C-20 formation. RO2 center dot termination emerges as the critical step that determines the highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Species that reduce the C-20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.Peer reviewe

    Role of iodine oxoacids in atmospheric aerosol nucleation

    Get PDF
    Iodic acid (HIO₃) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO₃ particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO₃⁻ and the sequential addition of HIO₃ and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO₂) followed by HIO₃, showing that HIO₂ plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO₃, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere
    • 

    corecore