51 research outputs found

    Population-based Surveillance for Hepatitis C Virus, United States, 2006–2007

    Get PDF
    Surveillance for hepatitis C virus infection in 6 US sites identified 20,285 newly reported cases in 12 months (report rate 69 cases/100,000 population, range 25–108/100,000). Staff reviewed 4 laboratory reports per new case. Local surveillance data can document the effects of disease, support linkage to care, and help prevent secondary transmission

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    Legal linked data ecosystems and the rule of law

    Get PDF
    This chapter introduces the notions of meta-rule of law and socio-legal ecosystems to both foster and regulate linked democracy. It explores the way of stimulating innovative regulations and building a regulatory quadrant for the rule of law. The chapter summarises briefly (i) the notions of responsive, better and smart regulation; (ii) requirements for legal interchange languages (legal interoperability); (iii) and cognitive ecology approaches. It shows how the protections of the substantive rule of law can be embedded into the semantic languages of the web of data and reflects on the conditions that make possible their enactment and implementation as a socio-legal ecosystem. The chapter suggests in the end a reusable multi-levelled meta-model and four notions of legal validity: positive, composite, formal, and ecological

    Transits of Known Planets Orbiting a Naked-Eye Star

    Get PDF
    © 2020 The American Astronomical Society. All rights reserved.Some of the most scientifically valuable transiting planets are those that were already known from radial velocity (RV) surveys. This is primarily because their orbits are well characterized and they preferentially orbit bright stars that are the targets of RV surveys. The Transiting Exoplanet Survey Satellite (TESS) provides an opportunity to survey most of the known exoplanet systems in a systematic fashion to detect possible transits of their planets. HD 136352 (Nu2 Lupi) is a naked-eye (V = 5.78) G-type main-sequence star that was discovered to host three planets with orbital periods of 11.6, 27.6, and 108.1 days via RV monitoring with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph. We present the detection and characterization of transits for the two inner planets of the HD 136352 system, revealing radii of 1.482-0.056+0.058 R ⊕ and 2.608-0.077+0.078 R ⊕ for planets b and c, respectively. We combine new HARPS observations with RV data from the Keck/High Resolution Echelle Spectrometer and the Anglo-Australian Telescope, along with TESS photometry from Sector 12, to perform a complete analysis of the system parameters. The combined data analysis results in extracted bulk density values of ρb = 7.8-1.1+1.2 g cm-3 and ρc = 3.50-0.36+0.41 g cm-3 for planets b and c, respectively, thus placing them on either side of the radius valley. The combination of the multitransiting planet system, the bright host star, and the diversity of planetary interiors and atmospheres means this will likely become a cornerstone system for atmospheric and orbital characterization of small worlds.Peer reviewe

    The First Data Release of the Sloan Digital Sky Survey

    Get PDF
    The Sloan Digital Sky Survey has validated and made publicly available its First Data Release. This consists of 2099 square degrees of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 square degrees of this area, and tables of measured parameters from these data. The imaging data go to a depth of r ~ 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The spectra cover the range 3800--9200 A, with a resolution of 1800--2100. Further characteristics of the data are described, as are the data products themselves.Comment: Submitted to The Astronomical Journal. 16 pages. For associated documentation, see http://www.sdss.org/dr

    Are tangles as toxic as they look?

    Get PDF
    Neurofibrillary tangles are intracellular accumulations of hyperphosphorylated and misfolded tau protein characteristic of Alzheimer's disease and other tauopathies. Classic cross-sectional studies of Alzheimer patient brains showed associations of tangle accumulation with neuronal loss, synapse loss, and dementia, which led to the supposition that tangles are toxic to neurons. More recent advances in imaging techniques and mouse models have allowed the direct exploration of the question of toxicity of aggregated versus soluble tau and have surprisingly challenged the view of tangles as toxic species in the brain. Here, we review these recent experiments on the nature of the toxicity of tau with particular emphasis on our experiments imaging tangles in the intact brain through a cranial window, which allows observation of tangle formation and longitudinal imaging of the fate of tangle-bearing neurons. Neurofibrillary tangles (NFT) were first described in 1906 by Alois Alzheimer based on Bielschowsky silver staining of the brain of his demented patient Auguste D (Alzheimer 1907; Goedert and Spillantini 2006). These intraneuronal aggregates have subsequently been found to be composed primarily of hyperphosphorylated tau protein and are definitive pathological lesions not only in Alzheimer's disease but also in a class of neurodegenerative tauopathies (Goedert et al. 1988; Spires-Jones et al. 2009). NFT pathology in Alzheimer's disease (AD) correlates closely with cognitive decline and synapse and neuronal loss (Braak and Braak 1997; Bretteville and Planel 2008; Congdon and Duff 2008; Mocanu et al. 2008b; Spires-Jones et al. 2009). As a result, NFT have long been considered indicative of impending neuronal cell death. More recent evidence, however, opposes this classical view. Here we review evidence addressing the question of whether NFT cause structural or functional neuronal damage

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Publisher Correction: Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper
    corecore