15 research outputs found

    An Abrupt Aging of Dissolved Organic Carbon in Large Arctic Rivers

    Get PDF
    Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We examine the radiocarbon activity (F14C) of dissolved organic carbon (DOC) in the northern Mackenzie River basin. From 2003‐2017, DOC‐F14C signatures (1.00 ± 0.04; n = 39) tracked atmospheric 14CO2, indicating export of “modern” carbon. This trend was interrupted in June 2018 by the widespread release of aged DOC (0.85 ± 0.16, n = 28) measured across three separate catchment areas. Increased nitrate concentrations in June 2018 lead us to attribute this pulse of 14C‐depleted DOC to mobilization of previously frozen soil organic matter. We propose export through lateral perennial thaw zones occurred at the base of the active layer weakened by preceding warm summer and winter seasons. Although we are not yet able to ascertain the broader significance of this “anomalous” mobilization event, it highlights the potential for rapid and large‐scale release of aged carbon from permafrost

    Brain structure and neurocognitive function in two professional mountaineers during 35 days of severe normobaric hypoxia

    Get PDF
    Background and purpose Animal studies suggest that exposure to severe ambient hypoxia for several days may have beneficial long-term effects on neurodegenerative diseases. Because, the acute risks of exposing human beings to prolonged severe hypoxia on brain structure and function are uncertain, we conducted a pilot study in healthy persons. Methods We included two professional mountaineers (participants A and B) in a 35-day study comprising an acclimatization period and 14 consecutive days with oxygen concentrations between 8% and 8.8%. They underwent cerebral magnetic resonance imaging at seven time points and a cognitive test battery covering a spectrum of cognitive domains at 27 time points. We analysed blood neuron specific enolase and neurofilament light chain levels before, during, and after hypoxia. Results In hypoxia, white matter volumes increased (maximum: A, 4.3% ± 0.9%; B, 4.5% ± 1.9%) whilst gray matter volumes (A, −1.5% ± 0.8%; B, −2.5% ± 0.9%) and cerebrospinal fluid volumes (A, −2.7% ± 2.4%; B, −5.9% ± 8.2%) decreased. Furthermore, the number (A, 11–17; B, 26–126) and volumes (A, 140%; B, 285%) of white matter hyperintensities increased in hypoxia but had returned to baseline after a 3.5-month recovery phase. Diffusion weighted imaging of the white matter indicated cytotoxic edema formation. We did not observe changes in cognitive performance or biochemical brain injury markers. Discussion In highly selected healthy individuals, severe sustained normobaric hypoxia over 2 weeks elicited reversible changes in brain morphology without clinically relevant changes in cognitive function or brain injury markers. The finding may pave the way for future translational studies assessing the therapeutic potential of hypoxia in neurodegenerative diseases

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget

    Permafrost landscape history shapes fluvial chemistry, ecosystem carbon balance, and potential trajectories of future change

    Get PDF
    Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost zone of the western Canadian Arctic: unglaciated uplands, ice-rich moraine, and organic-rich lowlands and till plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon (50%) and efflux of biotic CO2 (25%) dominated. In watersheds affected by thaw-induced mass wasting, erosion of ice-rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by thaw-induced wasting was, on average, equivalent to 6%–16% of estimated net ecosystem exchange (NEE). In watersheds affected by thaw-induced wasting, fluvial carbon export approached 60% of NEE. Because future intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon balance

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced
    corecore