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Abstract Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We
examine the radiocarbon activity (F14C) of dissolved organic carbon (DOC) in the northern Mackenzie
River basin. From 2003–2017, DOC‐F14C signatures (1.00 ± 0.04; n = 39) tracked atmospheric 14CO2,
indicating export of “modern” carbon. This trend was interrupted in June 2018 by the widespread release of
aged DOC (0.85 ± 0.16, n = 28) measured across three separate catchment areas. Increased nitrate
concentrations in June 2018 lead us to attribute this pulse of 14C‐depleted DOC to mobilization of previously
frozen soil organic matter. We propose export through lateral perennial thaw zones that occurred at the
base of the active layer weakened by preceding warm summer and winter seasons. Although we are not yet
able to ascertain the broader significance of this “anomalous” mobilization event, it highlights the
potential for rapid and large‐scale release of aged carbon from permafrost.

Plain Language Summary The thaw of continuously frozen grounds in the Arctic induced by
regional warming accelerates the release of carbon to the atmosphere and river systems. Of particular
concern is the fate of dissolved organic carbon (DOC) due to its potential for rapid oxidation to carbon
dioxide. In order to understand the ramifications of a warming climate, we analyze the radiocarbon age of
DOC in the northern Mackenzie River—a major Arctic river basin. DOC in large Arctic rivers has been
characterized by young radiocarbon ages, from modern vegetation and surface soils. In June 2018, we
recorded a departure from long‐term observations: Older DOC was measured in three large catchments
draining into the Mackenzie Delta. This release of aged DOC followed a warm summer and the second
warmest winter on record. We infer that the aged DOC derived from thaw of deeper soil horizons and
subsequent carbon mobilization and riverine export. This is the first time such an event has been
documented; it highlights the potential for abrupt and widespread aged DOC export with important
implications for regional and global carbon cycles.

1. Introduction

The northern circumpolar permafrost regions contain 44% of the global soil organic carbon stock within its
top 3 m, corresponding to approximately twice the amount of carbon present in the atmosphere (Hugelius
et al., 2014; Schuur et al., 2008). Organic‐rich permafrost soils have accumulated over millennia in peat
deposits and deltaic sediments (Zimov et al., 2006) with subzero temperatures acting to inhibit microbial
decomposition and preserve organic matter (Ping et al., 2011). Warming can lead to thawing and destabili-
zation of these perennially frozen soils (Jorgenson et al., 2006), rendering this vast, aged carbon stock vulner-
able to change (Schuur et al., 2015). Permafrost thaw exposes any associated organic matter to mechanical
and thermal erosion and can promote microbial decomposition and/or photodegradation (Ward &
Cory, 2016) that subsequently leads to the release of CO2 ormethane (Schuur et al., 2008). In the last 50 years,
mean annual air temperatures in northern Canada have increased by 2.3°C (and winter temperatures by
4.3°C), roughly 2–3 times the global average (Bush & Lemmen, 2019). Estimates of the impact of permafrost
degradation on high‐latitude soil carbon stocks predict a loss of between ~10 and ~170 PgC by the end of this
century (Koven et al., 2015; Schaefer et al., 2014; Schuur et al., 2015), potentially adding to atmospheric
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greenhouse gas burdens and exacerbating future climate change. Given these projections, tracking the fate
of this aged carbon pool, and constraining its response to both gradual and abrupt warming and permafrost
thaw, remains a priority (Turetsky et al., 2019).

Along with direct release to the atmosphere, aged carbon mobilized during permafrost thaw can enter sur-
face waters (Plaza et al., 2019) in the form of dissolved organic carbon (DOC) (operationally defined as <0.2
to <0.7 μm), while particulate organic carbon (POC) is largely supplied to freshwater systems by thermo-
karst and bank erosion (Jorgenson et al., 2006; Vonk et al., 2015). The degradation of permafrost can increase
the thickness of the active layer and result in the loss of ground ice, leading to the formation of thaw slumps,
taliks, and thermokarst wetlands (Vonk et al., 2015). Deeper groundwater flow paths contribute to the devel-
opment of supra‐permafrost taliks (areas of unfrozen ground) and connect laterally to the drainage network
(Woo, 2012). In early spring, the infiltration of meltwater into permafrost soils can activate hydrologically
connected lateral perennial thaw zones (Connon et al., 2018; Walvoord et al., 2019). The flow through
supra‐permafrost taliks may mobilize DOC from previously frozen soils, well before seasonal permafrost
begins to thaw (Walvoord et al., 2019). The sources and flux of DOC in Arctic rivers, which has garnered
interest due to its potential reactivity (Cory et al., 2013; Holmes et al., 2008; Mann et al., 2015; Vonk
et al., 2013) and its intrinsic link to hydrological pathways, may be modified by such ground thaw
(Fouché et al., 2020; Spencer et al., 2015). As water flow accesses deeper layers, a decrease in 14C activity
of DOC has been projected (Frey & McClelland, 2009; Schuur et al., 2015; Tank et al., 2012). Old DOC has
previously been identified at small scales, for example, in permafrost seeps and small streams (Dean
et al., 2018; Mann et al., 2015; Neff et al., 2006; Vonk et al., 2013). However, in the large Arctic rivers
(Yenisey, Lena, Ob', Mackenzie, Yukon, Kolyma) the 14C activity of DOC has been shown to contain “bomb”
carbon stemming from atmospheric nuclear weapons testing in themiddle‐twentieth Century, implying that
young and rapidly cycling organic matter—likely derived from surface vegetation and soils—dominates
DOC in large rivers (Raymond et al., 2007; Spencer et al., 2015).

In addition to the mobilization of aged carbon pools, permafrost thaw can result in enhanced weathering of
mineral soils and bedrock, further modifying riverine aquatic chemistry (e.g., Frey & McClelland, 2009;
Kokelj & Burn, 2005; O'Donnell et al., 2016; Tank et al., 2016; Vonk et al., 2015). As such, the export of major
ions (e.g., Ca2 + and SO4

2− ) which can be enriched in deeper mineral soils is expected to increase in all
circumpolar rivers as permafrost degradation persists (Frey & McClelland, 2009; Tank et al., 2012, 2016).
In contrast, dissolved nitrogen in the form of nitrate, NO3

−, is bioactive and influenced by cycling
through vegetation and microbial respiration. Elevated riverine NO3

− concentrations have been linked to
thaw slumps and thermokarst gullies (Bowden et al., 2008; Harms et al., 2014), as well as enhanced micro-
bial nitrification and subsequent leaching (Fouché et al., 2017; Louiseize et al., 2014). As such, these dis-
solved inorganic ions can provide additional insight on sources and pathways of the products of
permafrost thaw.

The Mackenzie River (1.8 × 106 km2) is a major carbon source to the Arctic Ocean (Hilton et al., 2015) and
has experienced increasing DOC fluxes over the last four decades (Tank et al., 2016). About 50% of the basin
lies within continuous and discontinuous permafrost zones (Obu et al., 2019), with its two large, northern
tributaries (Arctic Red: 21.8 × 103 km2; Peel River: 70.6 × 103 km2) draining almost exclusively continuous
permafrost (Figure 1a). The northern part of the basin has been particularly affected by climate change over
the instrumental record and has been identified as a region whose carbon stocks are under threat from per-
mafrost thaw (Bush & Lemmen, 2019; Kokelj et al., 2017). Here, we explore the hypothesis that enhanced
regional warming could modify transport pathways and the contribution of carbon stored in permafrost
soils. We investigate the 14C age of DOC and the flux of major ions carried by the Mackenzie River and its
northern tributaries to identify potential processes impacting the export of DOC in a high‐latitude river.

2. Methods

We collected river water in May–June 2017–2019, shortly after ice breakup at the high/receding water stage
(Figure 1c), for the Mackenzie River at Tsiigehtchic, in the Delta, and for the Peel and Arctic Red Rivers
(Figure 1a). In order to assess vertical variation, we used a modified horizontally mounted ~5.1 L Niskin bot-
tle to recover water from different depths (Hilton et al., 2015). River water was transferred to sterilized plastic
bags, weighed, stored in the dark, and filtered within 48 hr using precleaned filtration units (2017–2018) or
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Teflon‐lined steel units (2019) through polysethersulfone filters (PES; Ø 142 mm, 0.22 μm). Filtered water
was collected for DOC in 120 ml pre‐combusted (450°C, 6 hr) amber bottles, acidified to pH ~2 with 85%
H3PO4 (120 μl), and stored cooled and in the dark. Aliquots for ion analysis were collected in acid‐washed
high density polyethylene (HDPE) bottles. Sediment‐laden filters were folded, carefully placed in pre‐
combusted aluminum foil envelops and immediately frozen.

Major ions were measured at Durham University and ETH Zurich using a Dionex Ion Chromatography sys-
tem (DX‐120, Thermoscientific) with an analytical reproducibility of 5%. In order to help track water path-
ways, we utilize ratios of [Ca2 + ]/[Cl−] and [NO3

−]/[Ca2 + ]. Cl− is considered as relatively conservative ion
in aquatic environments, with minor engagement in biological and geochemical processes and sourced
mainly from rainwater (Gaillardet et al., 1999). Dissolved Ca2 + is mostly derived from chemical weathering
of carbonate minerals in the Mackenzie River basin (Gaillardet et al., 1999; Millot et al., 2003; Tank
et al., 2012). As such, [Ca2 +]/[Cl−] ratios can be used to compare the relative mobilization of chemical
weathering products between sampling periods. In contrast, NO3

− is strongly linked to nutrient cycling in
organic matter in near‐surface soils. Microbial mineralization of organic matter accumulates NO3

− during
the winter months when the uptake by plants is diminished (Edwards & Jefferies, 2013; Treat et al., 2016).
The [NO3

−]/[Ca2 +] ratio therefore allows us to assess the relative influence of organic matter cycling versus
mineral weathering, albeit with the recognition that NO3

− is not necessarily conservative and release from

(a) (b)

(c) (d)

Figure 1. (a) River depth profile sampling locations along the Mackenzie River (circle) in the Delta (dark gray) and at
Tsiigehtchic (light gray) complemented by the major tributaries, the Arctic Red (light blue square) and the Peel
River (dark blue diamond). (b) Mackenzie Delta closeup. (c) Discharge at the Mackenzie River at Tsiigehtchic from
2003 to 2019 (http://www.wateroffice.ec.gc.ca). Dots denote sampling dates. (d) DOC concentrations as function of
discharge. Shapes denote different sampling periods.
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the landscape may not cascade to increases in NO3
− in river channels (Harms & Jones, 2012; Wickland

et al., 2018).

DOC concentration measurements were conducted using a Shimadzu system (TOC‐L Series) at the
Department of Environmental System Science at ETH Zurich. DOC (10–53 μgC) was converted to CO2 using
a wet chemical oxidation approach (Lang et al., 2012, 2016). Prior to the oxidation inorganic CO2 was
removed by purging. Evolved CO2 fromDOC oxidation was analyzed using a mini carbon dating accelerator
mass spectrometer (MICADAS AMS) system equipped with a gas‐accepting ion source at the Laboratory for
Ion Beam Physics (LIP) at ETH Zurich. Blank assessment was based on the repeated measurements of
sucrose (Sigma, δ13C = −12.4‰ VPDB, F14C = 1.053 ± 0.003) and phthalic acid (Sigma, δ13C = −33.6‰
VPDB, F14C < 0.0025) standards. The evaluation of constant contamination described in Haghipour
et al. (2019) amounted to ~1 μgC.

Supporting information provides details of sample collection and analyses of various carbon species
(DOC and POC), nutrients, and major ions retrieved since 2003 near the apex of the Mackenzie Delta
(at Tsiigehtchic, upstream of the Arctic Red and Peel inputs) by the Pan‐Arctic River Transport of
Nutrients, Organic Matter, and Suspended Sediments (PARTNERS) and the Arctic Great Rivers
Observatory (ArcticGRO; www.arcticgreatrivers.org) projects.

3. Results

The samples from the Mackenzie River at Tsiigehtchic collected in June 2017, 2018, and 2019 were taken at
similar levels of water discharge and similar points on the hydrograph (i.e., shortly after highest peak) to
those collected from 2003–2016, although 2018 and 2019 had the lowest June discharge in the data set
(Figure 1c). For the Peel River, the ice breakup is typically a few days earlier inMay, and the 2017–2019 sam-
ples were collected at similar times relative to the discharge peak (Figure S1).

The June 2017, 2018, and 2019 sampling campaigns resulted in similar DOC concentrations for the
Mackenzie River at Tsiigehtchic (6.4 ± 0.9 mg/L, n = 18; Table S1) (± SD), which is within the variability
of the average of June samples from 2003 to 2017 from the PARTNERS‐ArcticGRO campaign
(5.7 ± 1.0 mg/L, n = 17) (Figure 1c). The DOC concentration for 2017–2019 samples was also similar for
the Mackenzie River in the Delta (7.3 ± 0.5 mg/L, n = 22), the Peel River (3.9 ± 0.5 mg/L, n = 9), and the
Arctic Red River (9.5 ± 2.0, n = 8).

From 2003–2013 for the Mackenzie River at Tsiigehtchic, DOC‐F14C values in May and June ranged
between 1.06 and 0.96, with an average DOC‐F14C value of 1.01 ± 0.04 (n = 10). In 2017, the F14C values
were similar for both sites on the Mackenzie River (Figure 1a and Table S1) and the Arctic Red and Peel
Rivers, with an average DOC‐F14C = 1.00 ± 0.03 (n= 22), and showed little variability with depth in the river
(Figure S2). In June 2018, for the Mackenzie River at Tsiigehtchic, DOC‐F14C values ranged from 1.02 to
0.73. Aged DOC was present throughout the Mackenzie River system (Figure 2), with an average DOC‐
F14C value across all sample of 0.85 ± 0.16 (n= 28; 1,306 ± 1,530 14C years). In 2018, the DOCwas evenmore
14C‐depleted (values as low as 0.51) in the Arctic Red and Peel Rivers. The Peel and Arctic Red basins drain
higher latitudes, with higher proportions of continuous and discontinuous permafrost cover than the
Mackenzie River at Tsiigehtchic (Figure 1a). These rivers join the main stem and combine in the
Mackenzie Delta (Middle Channel), where old DOC was also prevalent in 2018. It is important to note that
the Peel, Arctic Red, andMackenzie Rivers at Tsiigehtchic drain different basins and collectively encompass-
ing a large drainage area (Figure 1a).

In June 2019, DOC‐F14C values resembled those of years prior to 2017 (average DOC‐F14C = 0.99 ± 0.01,
n = 20). Nonparametric Kruskal‐Wallis tests confirm the statistically significant difference between
the 14C content of samples collected in 2018 from the Mackenzie River at Tsiigehtchic and the Mackenzie
Delta compared to those sampled in 2003–2017 and in 2019 (Table S2).

Nitrate concentrations ([NO3
−]) in the Mackenzie River at Tsiigehtchic (1.53 ± 0.6 μmol, n = 7) were lower

during the spring freshet in 2017 than the long‐term observations of the PARTNERS‐ArcticGRO projects
(3.9 ± 1.5 μmol, n = 17). Similar [NO3

−] are observed in Arctic Red (1.8 ± 1 μmol, n = 3) and Mackenzie
Delta (2.4 ± 1.1 μmol, n = 18) waters, while the Peel River supplied 4.9 ± 1.2 μmol (n = 5) to the Delta in
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2017 and 2019. In 2018, we observe a twofold to threefold increase in the [NO3
−] in the Mackenzie River and

all subcatchments (Figure 3 and Table S3). During the spring freshet, we note a significant negative
correlation between log‐transformed [NO3

−] and DOC‐F14C (r = −0.54, n = 60, p < 0.001).

4. Discussion

Prior to this study, reported DOC‐F14C values in the large Arctic Rivers (Yenisey, Lena, Ob', Yukon, Kolyma)
ranged from 0.82 to 1.16 (Barnes et al., 2018), comparable to those of the Mackenzie River up to 2017
(DOC‐F14C: 0.80–1.1; Figure 2) and similar to atmospheric 14CO2 (Dean et al., 2020; Raymond et al., 2007;
Spencer et al., 2015). This suggests that the DOC pool derives from recently formed biomass, for example,
plants, surficial soils, and aquatic productivity (Raymond & Bauer, 2001). Aged DOC has been detected in
permafrost seeps and small headwater streams in the Arctic (Dean et al., 2018; Mann et al., 2015; Neff
et al., 2006; Vonk et al., 2013). However, aged DOC has not previously been documented in larger Arctic riv-
ers, implying efficient removal during riverine transfer (Holmes et al., 2008; Mann et al., 2015; Vonk
et al., 2013) or dilution by modern DOC (Dean et al., 2018). Moderately aged DOC from large Arctic rivers
has been attributed to the maximum expansion of the active layer and a deeper penetration of groundwater
(Barnes et al., 2018). The presence of aged DOC has been observed in low latitude (Moore et al., 2013) and

(a) (b)

Figure 3. (a) Dissolved inorganic species in Mackenzie River at Tsiigehtchic. Relationship between [Ca2 +]/[Cl−] and
[NO3

−]/[Ca2 +]. Circles represent the values from 2003–2016 (ArcticGRO database), squares 2017, diamonds 2018,
and triangles 2019. Symbols are color coded for discharge (m3/s). (b) Radiocarbon activity (expressed as F14C) of DOC
versus NO3

− (μmol) during the spring freshet (May and June). The Mackenzie River samples at Tsiigehtchic and the
Delta are indicated in gray and black, whereas the Arctic Red and Peel Rivers are depicted in light and dark blue,
respectively. Open symbols represent NO3

− values integrated over depth.

(a) (b)

Figure 2. Radiocarbon activity, expressed as fraction modern (F14C), of DOC over time in the Mackenzie River: (a) F14C
of DOC. Circles are samples from the Mackenzie River at Tsiigehtchic and the main channel in the Delta, with filled
circles samples collected in May and June. Samples from the Arctic Red and Peel Rivers are also shown for
2017–2019. Data from 2004 to 2013 are provided by the ArcticGRO database. The atmospheric bomb 14C curve is shown
as a light gray line (Hammer & Levin, 2017). The error bar in the top left corner represents the mean
standard deviation of 14C measurements. (b) Boxplot of F14C for different years as a function of sampling location, with
the median (black line), first and third quartiles (box), and confidence interval (lines) shown.
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temperate watersheds (Evans et al., 2014) and linked to anthropogenic disturbance (Butman et al., 2015;
Drake et al., 2019; Griffith et al., 2009). In the context of this prior work, we discuss mechanisms and their
drivers that can explain two important features of the decadal time series from the Mackenzie River: (i) the
14C depletion of DOC in June 2018 across three separate catchment areas and (ii) the return to 14C‐enriched
DOC in June 2019.

4.1. The Timing of Sampling

DOC mobilization and supply to rivers can vary as a function of precipitation (Raymond, 2005; Stubbins
et al., 2012) and water discharge (Masiello & Druffel, 2001; Tittel et al., 2015). Broad‐scale changes in hydrol-
ogy associated with a shift in DOC source and flux at the time of sampling might explain the June 2018 aged
DOC signal. The Mackenzie River hydrograph is regulated by the onset of thaw and has a remarkably
consistent annual pattern (Figure 1c). Snow and ice melt induce a rapid increase in streamflow in spring
(freshet) which gradually subsides over subsequent months. During the spring freshet, the concentration,
composition, and average age of DOC could vary with discharge, perhaps in response to a “pulse‐shunt”‐like
behavior (Raymond et al., 2016). Snowmelt triggers the pulse‐like mobilization and transport of DOC and
other nutrients to streams and rivers. Associated high‐water velocities shunt solutes rapidly downstream,
reducing their residence time in the fluvial network and hence the potential for microbial or photochemical
remineralization.

However, no relationship between water discharge and DOC‐F14C emerges in the 2003–2017 and 2019 data
from the Mackenzie River at Tsiigehtchic. Instantaneous DOC fluxes measured in June 2018 are similar to
those in June 2017 and 2019, with differences in flux mainly controlled by the water yield (Figures S3
and S4). DOC concentrations are similar, both as a function of water column depth and over the studied time
period (Figure S5). It is therefore difficult to attribute the June 2018 14C depletion of DOC to a feature of the
typical annual hydrograph that has been missed in past sampling. When we consider the aged DOC input in
the Peel and Arctic Red Rivers (which drain large, separate watersheds), it suggests that any change in the
routing of DOC in June 2018 must be widespread. While we cannot constrain its duration, the sampling of
these different rivers took place over 7 days. More frequent samples collected in May 2018 from the surface
of the Arctic Red during the ice break up are generally 14C enriched (mean F14C = 0.96 ± 0.01, n = 8), but
the final sample on 29May 2019 wasmore 14C depleted (F14C = 0.89 ± 0.01). In June 2019, DOC‐F14C values
were similar to the other years in the data set (Figure 2). Overall, although annually collected “snap shot”
water samples cannot resolve the duration of this export event, we note that June 2018 samples were not
associated with anomalous discharge conditions and were collected during similar conditions as those from
2003 to 2019.

4.2. Aged DOC From Permafrost Soils and Climatic Warming

The large change in DOC‐F14C values in June 2018 can be viewed in the context of DOC transfer from soil to
streams and in particular the delivery of previously stored, old DOC and weathering products to the hydro-
logical network. Hydrological networks can access a much larger area than other potential causes of DOC
aging, such as anthropogenic activity, erosional slumping, and wildfires (Butman et al., 2015; Gibson
et al., 2018; Kettridge et al., 2012; Kokelj et al., 2013, 2015) (see supporting information discussion). The
annual summer and freezing temperatures play important roles in the dynamics and thickness of the active
layer (Kokelj & Burn, 2005). Air temperature records from Inuvik and Norman Wells during the freezing
season (onset and the end of continuous freezing) show temperature increases over the last 76 years
(Bush & Lemmen, 2019) (Figures S6, S7, and Table S4) and a pronounced temperature anomaly in winter
2017/2018. The winter 2018/2019 period shows an even higher temperature anomaly. In addition, we note
an anomalous warm summer period in 2017 which was followed by colder summer seasons in 2018 and
2019 (Figure S8).

Observations of permafrost temperature in the northern Mackenzie River basin point to a warming of 0.5°C
to 0.9°C and a thickening of the active layer by about 10% since 2000 (Biskaborn et al., 2019; Bush &
Lemmen, 2019; Smith et al., 2018). The shift of the permafrost table due to thaw during the summer months
occurs both vertically and laterally and allows the development of thin, perennial taliks within and above
permafrost (Lamontagne‐Hallé et al., 2018; Walvoord et al., 2012; Zhang et al., 2008). Mild winters are insuf-
ficiently cold to completely counterbalance this thaw. Increased hydrogeologic connectivity in the fall
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enhances the drainage of surface soils (Liljedahl et al., 2016), the reduction of soil moisture, and the tempor-
ary increase of the water storage capacity (McCartney et al., 2006; Quinton et al., 2005; Teufel &
Sushama, 2019). As a consequence, organic soils can be undersaturated prior to freeze back in fall. Under
this regime, a larger portion of meltwater can infiltrate soils in spring, rather than entering streams as sur-
face runoff (Teufel & Sushama, 2019). Percolating meltwater supplies sensible heat to the soil leading to the
thaw of the upper permafrost table and the expansion of hydrologically connected pathways (Connon
et al., 2018; Teufel & Sushama, 2019; Walvoord et al., 2019). Organic‐rich material concentrated below the
active layer can be mobilized by this subsurface flow of water, mixed with meltwater, and subsequently
transferred to streams (Plaza et al., 2019; Walvoord & Striegl, 2007; Walvoord et al., 2019). Supra‐permafrost
taliks are expected to become more pronounced with continued warming, as a result of delayed active layer
freeze up in fall accompanied by a poor freeze back in warm winters (Euskirchen et al., 2006; Serreze
et al., 2000; Walvoord et al., 2019).

To better constrain the mechanisms operating in June 2018, we examine dissolved ions that originate from
mineral weathering and organic matter cycling. We find that June 2018 waters exhibit higher abundances of
calcium ions relative to Cl− ions, a conservative tracer, and enhanced relative abundances of NO3

− ions
(Figure 3a). In addition, DOC F14C values were negatively correlated with [NO3

−] at all locations
(Figure 3b). An increase input of NO3

− to high‐latitude streams, rivers, and lakes has been associated with
gradual warming (e.g., Fouché et al., 2020; Frey et al., 2007; Harms & Jones, 2012; Jones et al., 2005;
McClelland et al., 2007; Walvoord & Striegl, 2007), the draining of thermokarst environments (Abbott
et al., 2015), and the more frequent occurrence of wildfires (Petrone et al., 2007). However, the fate of solute
transfer from permafrost soils to streams depends on abiotic and biotic processes, complex interactions
within the soil matrix, and residence times (Harms & Jones, 2012; Spencer et al., 2015; Striegl et al., 2005).
While Ca2 + ions are derived from carbonate weathering in the Mackenzie River basin (Tank et al., 2016),
NO3

− is produced by nitrification following organic matter mineralization and the dieback of plant roots
(Keuper et al., 2012; Treat et al., 2016). In fall and winter, NO3

− can accumulate as a result of continued
microbial remineralization, while the uptake by plants is reduced due to dormancy (Edwards &
Jefferies, 2013; Treat et al., 2016). Extractions performed on permafrost soils show that both Ca2 + and
NO3

− ions can be immobilized by freezing and enriched relative to other ions just below the active layer
(Kokelj & Burn, 2005; Reyes & Lougheed, 2015). The release of aged DOC in 2018 was accompanied by a
doubling in [NO3

−] (Figure 3b and Table S3). This suggests that waters accessing and routed through soils
near the permafrost table serve as a viable source of aged DOC in June 2018.

Although the winter 2018/19 experienced record warmth, we observe no aged DOC in the June 2019 sam-
ples. However, preceding summer temperatures in 2018 are lower than the long‐term average. Indeed, we
find that June 2019 waters have lower [NO3

−]/[Ca2 +] ratios and similar [NO3
−] as June samples from

2003–2017 (Figure 3a). The annual thaw depth strongly varies as a function of near‐surface temperature
(Kokelj & Burn, 2005; Teufel & Sushama, 2019). Given the cooler summer in 2018, it is possible that the
annual thawwas less severe and likely supported the formation of soil ice that counteracted the development
of taliks and hydraulically connected pathways in the following spring 2019. Another explanation could be
that our sampling missed an aged DOC signature that occurred earlier or later in 2019 (Figure 1c).
Alternatively, it could reflect an exhaustion of DOC first mobilized in June 2018 and/or concurrent increases
in mobilization of young surface organic carbon (Dean et al., 2018; Feng et al., 2013). Differences in the con-
tributions from specific higher‐order streams and/or the biodegradability of DOC during transport (Holmes
et al., 2008; Mann et al., 2015; Vonk et al., 2013) could have also played a role.

While it is not possible from our data set to unravel the details of carbon mobilization in permafrost zones
undergoing thaw, our work highlights the potential transitory nature of aged DOC export events. Despite
the challenges of long‐term sampling of river carbon species and coupled analyses of 14C activity, our obser-
vations underline the potential for rapid and large‐scale mobilization of aged carbon pools previously
sequestered in Arctic permafrost soils.

5. Conclusions

In this study, radiocarbon measurements of DOC in the Mackenzie River and its two large northern tribu-
taries (Peel and Arctic Red Rivers) from 2017 to 2019 are combined with previously published data to
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explore interannual variability in DOC export from a major Arctic fluvial system. DOC ages from 2003 to
2017 suggest a predominant source from recent vegetation and soils. However, samples from June 2018
record a previously undocumented and widespread export of aged DOC, before returning to modern F14C
values in June 2019. This aged DOC was accompanied by high [NO3

−] in all three rivers. The change in
DOC age and solute flux that we observe appears consistent with the formation of supra‐permafrost taliks
and the deeper percolation of groundwater, resulting in mobilization of organic matter and weathering pro-
ducts preserved in previously frozen, organic‐rich soil horizons. Limitations in sampling coverage preclude
elucidation of the magnitude and dynamics of aged DOC export and associated carbon cycle feedbacks in
response to a warming climate and highlight the need for sustained, long‐term observations and refined
sampling and measurement strategies. Irrespective of these caveats, our observations reveal the potential
for abrupt and pervasive mobilization of hitherto sequestered carbon from vast permafrost regions of the
Arctic.
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