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Abstract
Background and purpose: Animal studies suggest that exposure to severe ambient hy-
poxia for several days may have beneficial long- term effects on neurodegenerative dis-
eases. Because, the acute risks of exposing human beings to prolonged severe hypoxia on 
brain structure and function are uncertain, we conducted a pilot study in healthy persons.
Methods: We included two professional mountaineers (participants A and B) in a 35- day 
study comprising an acclimatization period and 14 consecutive days with oxygen concen-
trations between 8% and 8.8%. They underwent cerebral magnetic resonance imaging at 
seven time points and a cognitive test battery covering a spectrum of cognitive domains 
at 27 time points. We analysed blood neuron specific enolase and neurofilament light 
chain levels before, during, and after hypoxia.
Results: In hypoxia, white matter volumes increased (maximum: A, 4.3% ± 0.9%; B, 
4.5% ± 1.9%) whilst gray matter volumes (A, −1.5% ± 0.8%; B, −2.5% ± 0.9%) and cere-
brospinal fluid volumes (A, −2.7% ± 2.4%; B, −5.9% ± 8.2%) decreased. Furthermore, the 
number (A, 11– 17; B, 26– 126) and volumes (A, 140%; B, 285%) of white matter hyperin-
tensities increased in hypoxia but had returned to baseline after a 3.5- month recovery 
phase. Diffusion weighted imaging of the white matter indicated cytotoxic edema forma-
tion. We did not observe changes in cognitive performance or biochemical brain injury 
markers.
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INTRODUC TION

Excessive neuronal oxidative stress and insufficient oxidative stress 
resistance characteristically occur in the aging brain. This imbal-
ance probably contributes to neurodegenerative diseases such as 
Alzheimer's disease, Parkinson's disease, multiple sclerosis or amy-
otrophic lateral sclerosis. Moreover, oxidative stress promotes de-
myelination, cell cycle arrest and cell death, which may eventually 
limit neuronal regeneration. The therapeutic potential of hypoxia 
as a means of controlling oxidative stress has therefore been in-
vestigated in human cell and animal studies. In a mouse model of 
Friedreich's ataxia, breathing 11% O2 diminished ataxia progression 
[1]. Concordantly, chronic hypoxia (11% O2) prevented symptom de-
velopment in a mouse model of the Leigh syndrome, a mitochondrial 
disease [2]. Yet, translating these findings from animals to patients 
could be limited by the adverse effects of severe hypoxia on brain 
tissue integrity and function. Indeed, graded decompression of 
healthy individuals to an ambient pressure equivalent to the summit 
of Mount Everest substantially worsened grammatical reasoning [3], 
psychomotor performance and mental efficiency [4].

Hypoxic cerebral injury is another concern. Sixteen hours of 12% 
normobaric hypoxia led to sodium accumulation in the cerebral ex-
tracellular space resulting in ionic edema [5]. Furthermore, cerebral 
magnetic resonance imaging (MRI) studies showed reversible local 
vasogenic and cytotoxic white matter edema in mountaineers re-
turning from high altitude [6]. Irreversible damage to white and gray 
matter was seen after returning from extreme altitude [7].

Whether severe normobaric hypoxia, intended for therapeu-
tic purposes, adversely affects cerebral function and integrity in 
healthy individuals is unknown.

In a pilot study applying normobaric hypoxia corresponding 
to approximately 7000 m altitude for several weeks [8], whether 
chronic severe hypoxia produces clinical findings in cerebral MRI, 
changes in blood brain injury biomarkers and a decline in neurocog-
nitive function was assessed in two healthy individuals.

MATERIAL S AND METHODS

At the German Aerospace Center, two healthy professional moun-
taineers were enrolled in a 35- day normobaric hypoxia study. 
Participant A (male, 57 years) had extensive experience with 

>8000- m altitude and participant B (female, 49 years) with altitudes 
up to 6000 m. During the study, arterial partial pressures of oxygen 
decreased to a minimum of 36 mmHg in participant A and 33 mmHg 
in participant B [8]. The protocol was approved by the North Rhine 
Medical Association ethics committee and conducted according to 
the Declaration of Helsinki (pre- registration DRKS00013772) after 
written informed consent was obtained.

Cerebral MRI (3- T Siemens Biograph), with morphological se-
quences, susceptibility weighted imaging (SWI), arterial angiography 
and diffusion tensor imaging (DTI), was obtained 1 month before, 
once during acclimatization, three times in hypoxia, and after 1 
and 4 months of recovery. During transfer to and examinations in 
the MRI facility, hypoxia was maintained by breathing equivalent 
hypoxic gas mixtures through a face mask from a Douglas bag. 
Based on T1- weighted magnetization- prepared rapid gradient- echo 
(MPRAGE) imaging, cerebrospinal fluid and white and gray matter 
volumes were acquired [9]. The open source FreeSurfer image anal-
ysis suite was applied (v7.1.0; http://surfer.nmr.mgh.harva rd.edu/). 
Images were automatically processed with the longitudinal stream 
in FreeSurfer to extract reliable volume estimates (Appendix S1). 
White matter hyperintensities were quantified from preprocessed 
fluid attenuated inversion recovery (FLAIR) images. Subsequently, 
hyperintensities were assigned to atlas- based brain regions [10]. DTI 
acquisitions were processed using the ENIGMA- DTI pipeline (http://
enigma.ini.usc.edu), based on the FSL package TBSS [11], to measure 
average whole- brain fractional anisotropy value and average tract 
fractional anisotropy values for predefined white matter tracts. 
Additionally, axial and radial diffusivity and mean diffusivity were 
measured. Built- in 3D slicer modules were applied to determine 
basilar skull artery volumes from high- resolution 3D time- of- flight 
angiography and superior sagittal sinus volumes from an isotropic 
high- resolution T2- weighted sequence. Morphological sequences as 
well as SWI were evaluated by two blinded radiologists (Appendix 
S1).

Cognitive performance was tested 28 out of 35 study days with 
the cognition test battery developed for NASA and designed for as-
tronauts. Cognition comprises 10 brief tests covering various cog-
nitive domains (Appendix S1) [12]. Data were corrected for practice 
and stimulus set difficulty effects prior to analysis [13].

The brain injury markers neurofilament light chain and neuron 
specific enolase were determined in blood samples collected on 
study days 0, 16, 21, 27, 32 and 35 and after 30 days of recovery.

Discussion: In highly selected healthy individuals, severe sustained normobaric hypoxia 
over 2 weeks elicited reversible changes in brain morphology without clinically relevant 
changes in cognitive function or brain injury markers. The finding may pave the way for 
future translational studies assessing the therapeutic potential of hypoxia in neurodegen-
erative diseases.

K E Y W O R D S
acute mountain sickness, brain recovery, hypoxic limits of the brain, performance, white matter 
hyperintensities
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RESULTS

Both participants experienced high- altitude- like sickness without 
progression to relevant cerebral edema.

Compared with baseline, white matter volumes increased in hy-
poxia up to 4.3% in A and 4.5% in B (95% confidence interval A, 
3.4, 5.1; B, 2.6, 6.4). Gray matter volumes did not show consistent 
changes. Cerebrospinal fluid volumes decreased by 2.7% in A and by 
5.9% in B during hypoxia (95% confidence interval A −5.1, −0.3; B, 
−12.1, 2.3). Whereas in both, intracranial arterial volumes increased 
in hypoxia (maximum: A, +8.1%; B, +5.1%), intracranial venous vol-
umes responded differently with a steady increase until the end of 
hypoxia in A and a steady decrease in B.

The number and volume of white matter hyperintensities in-
creased in hypoxia but rapidly resolved during recovery (Figure 1). 
Averaged white matter diffusion values indicated an emerging cyto-
toxic edema component with a maximum during the second hypoxia 
measurement and partial regression early into the recovery phase. 
Microhemorrhages were not detected.

Under hypoxia, cognitive speed was significantly faster for three 
tests (digit symbol substitution, line orientation and visual object 
learning), whilst it was significantly slower for the balloon analog risk 
test only (Figure 1). Across all domains, speed was significantly faster 
(+0.28 SD, p = 0.028) whilst cognitive accuracy exhibited no signifi-
cant changes (+0.04 SD, p = 0.71) under hypoxia. Standardized risk- 
taking propensity on the balloon analog risk task was 0.47 standard 
deviations higher in the low compared to the high oxygen condition 
(+0.27 SD; p = 0.0921).

Hypoxia- associated biochemical signal of brain damage 
was not detected. Neuron specific enolase, a neuronal damage 
marker, remained low in both participants in hypoxia (A, normoxia 
23.5 ± 12.0 μg/l, hypoxia 22.7 ± 3.5 μg/l; B, normoxia 15.4 ± 1.1 μg/l, 
hypoxia 18.2 ± 3.0 μg/l). No obvious reasons were found for the 
slight, intermittent, neuron specific enolase increase up to 37.3 μg/l 
in subject A during reoxygenation. Concordantly, neurofilament light 
chain, a marker for axonal damage, did not increase in hypoxia in ei-
ther participant (A, normoxia 14.6 ± 0.8 pg/ml, hypoxia 13.9 ± 1.3 pg/
ml; B, normoxia 8.6 ± 0.7 pg/ml, hypoxia 7.2 ± 0.9 pg/ml).

F I G U R E  1  Results of cerebral magnetic resonance imaging, neurocognitive function testing and biochemical markers of brain injury. (a) 
Number and volume of white matter hyperintensities over the course of the study (participant A, blue; participant B, orange): BL, baseline; 
AP, acclimatization; H1– H3, hypoxia; R + 1, recovery after 1 month; R + 4, recovery after 4 months. (b) Representative MRI (T2- FLAIR 
transversal) sequences showing white matter hyperintensities which emerged in hypoxia. (c) Normobaric hypoxia effects on biochemical 
markers (participant A, blue; participant B, orange; inspiratory oxygen level, blue area): BL, baseline; AP, acclimatization; H1– H3, hypoxia; 
R + 1, recovery after 1 month. (d) Normobaric hypoxia effects on cognitive performance shown as the average for both individuals: BART, 
balloon analog risk test; MP, motor praxis task; AM, abstract matching; ERT, emotion recognition task; NBACK, working memory test; MRT, 
matrix reasoning test; PVT, psychomotor vigilance test; DSST, digit symbol substitution task; LOT, line orientation test; VOLT, visual object 
learning test [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)
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DISCUSSION

Several weeks of sustained severe normobaric hypoxia did not lead 
to irreversible structural or functional brain changes. Strikingly, MRI 
findings in hypoxia, like white matter hyperintensities, were discon-
nected from cognitive function and from relevant changes in bio-
markers of neuronal (neuron specific enolase) and axonal damage 
(neurofilament light chain). Yet, volume changes of intracranial com-
partments during hypoxia were observed, suggesting maladaptation 
on the tissue level.

Because hypoxic cerebral vasodilation contributes to cerebral 
edema formation [14], the large increase in white matter hyperinten-
sity number and volume in our female participant was interpreted as 
local vasogenic edema formation, probably caused by capillary barrier 
breakdown. It is speculated that her higher white matter hyperinten-
sity burden at baseline may result from lower white matter integrity, 
which in turn could increase the susceptibility to hypoxia. However, 
a gender effect seemed unlikely because a similar phenomenon was 
also discovered in a male individual after 1 week at 4559 m [6]. White 
matter seems particularly susceptible for hypoxic stress, which causes 
an increased serum filament level, a marker for neuro- axial injury, in 
healthy participants 44 h after ascending actively to 4454 m [15]. After 
3 months of recovery, cerebrovascular alterations had regressed com-
pletely in our participants, which is in good agreement with the tran-
sient nature of hypobaric hypoxia induced cerebral responses [6].

Our findings confirm that the acclimatized human brain exhibits 
remarkable hypoxia tolerance. Accuracy of cognitive function was 
unchanged whilst speed increased slightly but significantly across 
the domains digit symbol substitution, line orientation and visual ob-
ject learning performance. The latter can probably be attributed to 
continued small practice effects beyond the fifteenth repetition of 
the cognition test [13]. The balloon analog risk test was the only test 
that exhibited significant slowing and simultaneous non- significant 
increases in risk taking. Incidentally, impaired grammatical reason-
ing and an increased number of transposed digits during everyday 
conversations was also recognized in both participants. Overall our 
findings suggest that the two experienced mountaineers were able to 
maintain cognitive function in the face of substantial hypoxia.

Our participants were professional mountaineers and are there-
fore not representative for the average population. Additional stud-
ies in patients with neurodegenerative disease are required. Initially, 
such studies should be limited to hypoxia experienced patients, 
which appears feasible considering that several mountaineers with 
neurodegenerative diseases have summited Mount Everest.

Our results suggest that severe sustained normobaric hypoxia 
is tolerated in highly selected individuals and may pave the way for 
future translational studies of the therapeutic potential of hypoxia in 
neurodegenerative diseases [1].
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