40 research outputs found

    In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system

    Get PDF
    The array of specialized neuronal and glial cell types that characterize the adult central nervous system originates from neuroepithelial proliferating precursor cells. The transition from proliferating neuroepithelial precursor cells to neuronal lineages is accompanied by rapid global changes in gene expression in coordination with epigenetic modifications at the level of the chromatin structure. A number of genetic studies have begun to reveal how epigenetic deregulation results in neurodevelopmental disorders such as mental retardation, autism, Rubinstein–Taybi syndrome and Rett syndrome. In this review we focus on the role of the methyl-CpG binding protein 2 (MeCP2) during development of the central nervous system and its involvement in Rett syndrome. First, we present recent findings that indicate a previously unconsidered role of glial cells in the development of Rett syndrome. Next, we discuss evidence of how MeCP2 deficiency or loss of function results in aberrant gene expression leading to Rett syndrome. We also discuss MeCP2's function as a repressor and activator of gene expression and the role of its different target genes, including microRNAs, during neuronal development. Finally, we address different signaling pathways that regulate MeCP2 expression at both the post-transcriptional and post-translational level, and discuss how mutations in MeCP2 may result in lack of responsiveness to environmental signals

    The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease.

    Get PDF
    The miR-17/92 cluster is among the best-studied microRNA clusters. Interest in the cluster and its members has been increasing steadily and the number of publications has grown exponentially since its discovery with more than 1000 articles published in 2012 alone. Originally found to be involved in tumorigenesis, research work in recent years has uncovered unexpected roles for its members in a wide variety of settings that include normal development, immune diseases, cardiovascular diseases, neurodegenerative diseases and aging. In light of its ever-increasing importance and ever-widening regulatory roles, we review here the latest body of knowledge on the cluster\u27s involvement in health and disease as well as provide a novel perspective on the full spectrum of protein-coding and non-coding transcripts that are likely regulated by its members

    Epigenetics in Rheumatoid Arthritis

    Full text link
    Epigenetics is a steadily growing research area. In many human diseases, especially in cancers, but also in autoimmune diseases, epigenetic aberrations have been found. Rheumatoid arthritis is an autoimmune disease characterized by chronic inflammation and destruction of synovial joints. Even though the etiology is not yet fully understood, rheumatoid arthritis is generally considered to be caused by a combination of genetic predisposition, deregulated immunomodulation, and environmental influences. To gain a better understanding of this disease, researchers have become interested in studying epigenetic changes in rheumatoid arthritis. Here, we want to review the current knowledge on epigenetics in rheumatoid arthritis

    Control of IL-4 expression in T helper 1 and 2 cells

    No full text
    The mechanism of differentiation of naïve T cells to a variety of effector lineages, but particularly to T helper type 1 (Th1) and Th2 cells, has been the subject of intense scrutiny over the past two decades. Studies have revealed that the expression of cytokines, receptors, signalling molecules, transcription factors, DNA methylating enzymes and histone-modifying enzymes is altered during the process and has been shown to play a co-ordinated role to facilitate expression of the cytokines interleukin-4 (IL-4), IL-5 and IL-13 in Th2 cells, or interferon-γ in Th1 cells. Regulation of IL-4 expression has been of particular interest for two main reasons: first because IL-4 acts as a growth factor for Th2 cells, and second because of its role in the induction of immunoglobulin class switching to immunoglobulin E, which plays a critical role in mediating allergic responses. Study of the pathways that promote this tissue-restricted expression of IL-4 may highlight potential areas for therapeutic intervention

    miRNA in spinal muscular atrophy pathogenesis and therapy

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by the selective death of lower motor neurons in the brain stem and spinal cord. SMA is caused by mutations in the survival motor neuron 1 gene (SMN1), leading to the reduced expression of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that regulate post-transcriptional gene expression. Recent findings have suggested an important role for miRNAs in the pathogenesis of motor neuron diseases, including SMA. Motor neuron-specific miRNA dysregulation in SMA might be implicated in their selective vulnerability. In this study, we discuss recent findings regarding the consequences of SMN defects on miRNAs and their target mRNAs in motor neurons. Taken together, these data suggest that cell-specific changes in miRNAs are not only involved in the SMA motor neuron phenotype but can also be used as biomarkers and therapeutic targets
    corecore